Order and Containment in Concurrent System Design

Copyright Fall 2000

by
John Sidney Davisl||

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2000 2. REPORT TYPE 00-00-2000 to 00-00-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Order and Containment in Concurrent System Design £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thisdissertation considersthe difficulty of modeling and designing complex, concurrent systems. Theterm
concurrent isused hereto mean a system consisting of a network of communicating components. Theterm
complex isused hereto mean a system consisting of componentswith different models of computation such
that the communication between different components has differ ent semantics accor ding to the respective
interacting models of computation. M odeling and designing a concurrent system requiresa clear

under standing of the types of relationshipsthat exist between the components found within a concurrent
system. Two particularly important types of relationships found in concurrent systemsare the order
relation and the containment relation. The order relation representsthe relative timing of component
actionswithin a concurrent system. The containment relation facilitates human under standing of a system
by abstracting a system?s componentsinto layers of visibility. The consequence of improper management of
the order and containment relationshipsin a complex, concurrent system is deadlock. Deadlock isan
undesirable halting of a system?s execution and isthe most challenging type of concurrent system error to
debug. The contents of this dissertation show that no methodology is currently available that can concisely,
accur ately and graphically model both the order and containment relations found in complex, concurrent
systems. Theresult of the absence of a method suitable for modeling both order and containment isthat
the prevention of deadlock isvery difficult. This dissertation offersa solution to this problem with the
introduction of the diposet.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 122

unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Order and Containment in Concurrent System Design

by

John Sidney Davis||

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Science

University of Californiaat Berkeley

Professor Edward A. Lee, Chair

This dissertation considers the difficulty of modeling and designing complex, concurrent
systems. The term concurrent is used here to mean a system consisting of a network of commu-
nicating components. The term complex is used here to mean a system consisting of components
with different models of computation such that the communication between different components
has different semantics according to the respectiveinteracting models of computation.

Modeling and designing a concurrent system requires a clear understanding of the types
of relationshipsthat exist between the components found within a concurrent system. Two partic-
ularly important types of relationships found in concurrent systems are the order relation and the
containment relation. The order relation represents the relative timing of component actions within
a concurrent system. The containment relation facilitates human understanding of a system by ab-
stracting a system’s componentsinto layers of visibility.

The consequence of improper management of the order and contai nment rel ationshipsin a
complex, concurrent systemis deadlock. Deadlock isan undesirable halting of a system’s execution
and is the most challenging type of concurrent system error to debug. The contents of this disserta-

tion show that no methodology is currently available that can concisely, accurately and graphically

model both the order and containment relations found in complex, concurrent systems. The result
of the absence of a method suitable for modeling both order and containment is that the prevention
of deadlock isvery difficult. Thisdissertation offers a solution to this problem with the introduction

of the diposet.

Professor Edward A. Lee
Dissertation Committee Chair

This dissertation is dedicated to
0O.C. Jones!

O.C. Jones isthe janitor who told me to “keep working hard, son.”
O.C. Jones s the faculty member, with few black colleagues, who
encouraged meto push forward. O.C. Jones is the church deacon,
the secretary, the grocery clerk, the barber who continually whispered
encouragement and shouted for educational achievement. Without O.C. Jones

| would not have completed this project.

10.C. Jonesis afictional character who represents senior citizens of African descent in afashion similar to Langston
Hughes' JesseB. Simple. | created O.C. Jones with the help of Marshell D. Jones.

Contents

List of Figures
List of Tables

1 Managing Inconsistency And Complexity In Concurrent Systems

1.1 Component-BasedDesign

111 Object-Oriented Programming oo v v i e ..
112 SoftwareEnginesring.
113 Forma SemantiCs
114 SystemLevel EDA
1.2 Abstracting Component-Based Design
1.3 DissatationOutline.
The Semantics of Concurrent Systems
2.1 TheSemanticsof Concurrent Programs o ..
211 ConcurrencyandOrder
212 RepresentingConcurrent Systems
213 DIPOSES
214 Typesof Order
2.2 Diposetsand Concurrent Programming o oo e
221 Safety and Synchronization
222 LivenessandDeadlock
2.2.3 Conservative Compile Time Deadlock Detection
224 CommunicationSemantics
225 AnExample: PtPlot And The Java™SwingPackage
I nterfacing Heter ogeneous Process M odels
3.1 Assessing TheEffectivenessof anAdapter
32 ProcessModels
3.2.1 Distributed DiscreteEvent(DDE)
322 ProcessNetworks(PN)
3.23 Communicating Sequential Processes(CSP)
33 Order & ATOMICProCeSSES o o e e

Vi

viii

O ~NWwpEF

11
12
13

16
16
18
20
26
33
34
37
38
41

45

3.3.1 Ordering Communication: Event Drivenvs. DataDriven 59
3.3.2 Reordering Communication 61
34 Order & CompoSIiteProcesSES v v v v o e e e e 65
341 Concurrent Adapters 66
3.4.2 Non-DeterministicChoice: Blessing& Curse 67
34.3 Totdly Ordered Event DrivenModels 68
Implementation 70
41 Modding& Design 71
4.2 ThePtolemy Il Architecture 72
421 ThePtolemyll Packages 72
4.2.2 Hierarchical Heterogeneity o 77
423 TheProcessPackage 78
4.3 Hierarchical Heterogeneity and theProcessPackage 81
4.3.1 Controlling ProcessReceivers at CompositeActor Boundaries. 84
4.3.2 Allocating Receivers at CompositeActor Boundaries 85
4.4 Domain Polymorphismand Reorder Invariance 86
Conclusion 90
51 Primary Contributions 91
52 Secondary Contributions 91
53 FutureWork 92
54 FnalRemarks. 92
The Semantics of Programming L anguages 103
A.l Axiomatic Semantics& Predicates o 104
A.2 Operationa Semantics& Automata 104

A.3 Denotational Semantics& Recursion 106

Vi

List of Figures

11

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13
214
2.15
2.16
217
218
219

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
39
3.10
311

A Sequential Nested Diposet 14
Two Communicating Threads. 18
Sequentia Interleavings. 19
Insufficient Poset Representationsof Program2.1 22
An Interval Order Representationof Program2.1 23
A Parallel Chain Poset With No Corresponding Interval Order 23
An Example Graph and Directed Graph 24
An Example Petri Net WithFiring 26
AnExampleDiposet 29
AnExampleNested Diposet 30
A Sequential Nested Diposet (Explicit Representation) 31
A Sequential Nested Diposet (Implicit Representation) 35
A Nested Diposet Corresponding ToProgram2.2 36
A PossibleInterleaving Of CallsTodo() Andundo() InProgram23. 38
Order/Containment ConstraintsLeading ToDeadlock 40
Order/Containment Constraints That Do Not Lead To Deadlock 42
A Diposet Representing Asynchronous Communication 44
A Diposet Representing Synchronous Communication 45
The Separate ThreadsInPtPlot 47
PtPlot and the Java™ Swing Event Dispatch Thread 48
A SampleEmbedded System 51
Typesof Heterogeneity 54
Non-deterministicChoice. 58
Time-Stamped Events Awaiting Consumption by a DDE Component 60
The Basic Unbounded Asynchronous Message Passing Order Constraint 62
The Basic Bounded Asynchronous Message Passing Order Constraint 62
The Basic Synchronous Message Passing Order Constraint 63
Reorder Invariance of Unbounded PN Consumptions 64
Reorder Variance of PN Consumptionswith Productions 64
Reorder Varianceof CSPComponents o e 65

Sequential Executionof an Adaptero 66

Vii

3.12 Thelntroduction of Deadlock ViaNon-DeterministicChoice 68
3.13 Totally Ordered Event Driven Models with Reorder Variant Components. 69
4.1 ThePtolemy Il Package Structure 73
42 A SamplePtolemy I Graph 74
4.3 Executionand IterationinaSample Ptolemy Il Model 76
4.4 Domain Polymorphism: Identical actorsin the left and right systems have different
communication semantics because of their directors. 77
45 Hierarchica Heterogeneity inaSample Ptolemy Il Model 78
4.6 Boundary Ports and Boundary Receiversin an Opague Composite Actor 79
4.7 ThePtolemy Il Process Package: Directors 82
4.8 ThePtolemy Il Process Package: Receivers 83
4.9 Deadlock Potential with Domain PolymorphicActors 89

List of Tables

4.1 Actor and Branch States when a Processis Contained by a Process . . .

4.2 Actor and Branch States when a Process is Contained by a Non-Process

viii

Acknowledgements

| thank God for my completion of this dissertation and for all of the people who were placed in my
lifeto help me as| made thisjourney. First and foremost, | thank my immediate family. | thank my
father, John S. Dauvis, for teaching me the value of hard work and consistency and for the love of
music that | inherited from him. | thank my mother, Julia A. Davis, for her curiosity and laughter
and for teaching me how to have bold visions and then make them come true. | thank my brother,
Jeffrey C. Davis, for teaching me compassion and sincerity and for reminding me to not forget to hit
theball.? | thank my sister, Jennifer N.G. Davis, for teaching methat if I’ m ever losing an argument
asufficient level of sillinesswill distract my opponent and make me thevictor. | aso thank Jennifer
for reminding me of the importance of teaching children.

| thank my good friend Adrian J. Isles, Ph.D. for being an excellent travel mate on this
arduousdoctoral journey. Our | ate night debates and housemate pontifi cationson random philosoph-
ical topicswere fun and stimulating. | owe a debt of gratitudeto my advisor Edward A. Lee, Ph.D.
Edward’s emphasis on academic rigor is at once intimidating and comforting. | must a'so mention
that Edward's EECS 225A Digital Signal Processing course was one of the best organized classes |
have ever taken. Beyond this| thank Edward for welcoming meinto hisresearch group after my first
advisor moved to Europe. | truly appreciated the members of both my dissertation and qualifying
exam committees. Thomas A. Henzinger, Ph.D. provided exhaustiverigor and Shankar Sastry,
Ph.D. has a contagious academic enthusiasm that was exciting. | truly enjoyed working with James
A. Sethian, Ph.D. both on my committees and with the Java™ level set algorithms.

There are several members of my research group that | wish to thank. Geronico “Ron”
Galicia encouraged me to consider the el ectronic design automation research speciaty and we de-
veloped a good friendship as we began our careers in the Ptolemy group. Michael “ Cameron”
Williamson, Ph.D. provided calmwisdomwhen | wasanew member inmy research group. | learned
C++ under the patient tutelage of Allan Lao. Johnathan Reason was an excellent study mate and
helped me stay focused. Dr.ir. Bart Kienhuis, apostdoctoral student, gave me atremendousamount
of help as | worked on the details of my dissertation. He helped me work out bugs with the LaTex
word processing commands and he gavevery detailed feedback on style. Furthermore, he repeatedly

2 Jeffrey was my biggest fan during my little league baseball years; he would often shout “ Don’t forget to hit the ball”
when | was up to bat.

reinvorced my confidence in the subject matter by recognizing the significance of my contributions.
Of dl of my Dutch friends named “Bart Kienhuis,” Bart is my favorite. Stephen Edwards, Ph.D.
provided “tough academic love” as | prepared for my qualifying examination and he reminded me
and many othersto put thingsin perspective and graduate.® M udit Goel and | shared adjacent desks
in the Ptolemy Group that facilitated stimulating conversation and a gresat friendship. Bilung Lee,
Ph.D. helped me clear my dissertation thoughts as we both neared the finish line together and Nick
Zamora provided useful comments on a draft of my first chapter.

My extended family and friends provided immeasurable support. Marshell D. Jones re-
minded meto take graduate school and life by thereinsand ride! PeggyeBrown kept mewell fed; oh
how wonderful it wasto receive her abundant giftsof home cooked food after alate night of software
debugging. SheilaHumphreys, Ph.D. had the ability to boost my confidence and get me smilingon
even therainiest of days. Peggye and Sheilawere my mothers away from home. My cousin Carla
Chambers and her son Chr éstien were distant rel atives upon my arrival to Caifornia, but they im-
mediately took mein and reminded me of the strength of alovingfamily bond. | thank my aunt Sar ah
“Tina” Mclntosh, M.D. who left her husband and two sonsat home and braved a cross country trip
from Ohiowith her two year old daughter to attend my graduation. | was blessed to have awonderful
church family at Allen Temple Baptist Church and in particular the Young Adult Sunday School
Classtaught by Carl Gill helped keep me spiritually centered throughout this process.

Themembers of BGESS (Black Graduate Engineering and Science Students), BESSA
(Black Engineering and Science Students Assocation) and GSAD (Graduate Studentsof African
Descent) were a source of many lifetime friendships. These organizations were critical to my suc-
cess at UC Berkeley. MTFO, asmall dissertation support group of friends, provided a wonderful,
weekly push. MTFO included Andre Lundkvist, David Campt, Ph.D., Adrian J. Isles, Ph.D.,
Jeffrey R.N. Forbes, Ricks Brooks, Ph.D., Kamau Bobb, John Harkless, Ray Gilstrap, Tajh
Taylor and Tameka Carter. The war stories, accolades and laughter shared in MTFO were mental
nourishment and | highly recommend a dissertation support group for others working on graduate
degrees.

Itisapleasureto thank everyonewho (at onetime or another) | shared living space within

#Planning to begin graduate school ? Heed Stephen’ sadvice and read the book “ Getting What You CameFor” by Robert
L. Peters.

Xi

the penthouse at 474 Merritt Avenue, Apt. 8in Oakland, California. Adrian J. 1sles, Ph.D., Jef-
frey R.N. Forbes, Robert Stanard, Damian |. Rouson, Ph.D., Kyssdline Jean-Marie, Carrletta
M. Priceand Christine Hoang were al great roommates. | can’'t wait until the movie comes out!

I conclude these acknowledgements by thanking the host of government and corporate
sponsors that supported my graduate work through the Ptolemy project. These supporting organi-
zations included the Defense Advanced Research Projects Agency (DARPA), the State of Cal-
ifornia MICRO Program, and the following companies. The Alta Group of Cadence Design
Systems, Hewlett Packard, Hitachi, Hughes Space and Communications, NEC, Philips, and
Rockwell.

Chapter 1

Managing I nconsistency And

Complexity In Concurrent Systems

Thefirst rule of using threadsis this: avoid themif you can.
- The online Java™ Tutorial

A concurrent systemisaset of interacting components. A concurrent, computational sys-
tem consistsof componentsthat cooperatein computing data[Andrews, 1991; Milner, 1989; Hoare,
1985]. We find concurrent, computational systemsall around us. For example, the operating systems
found on personal computers concurrently run browsers, word processors and database programs.
The embedded systems found in automabiles concurrently respond to the driver’sfoot and the road
being travelled upon to properly operate an anti-lock braking system. State-of-the art cell phones
transfer the user’svoice into bits and bytes while simultaneously responding to call waiting requests
and input from the phone touch pad.

In somecases, concurrency isapparent, meaning that only one action happensat any given
time although a human would perceive different actions happening simultaneously. In other cases,
concurrency isactual, meaning that two or more actionsoccur simultaneously. Inthislatter category,
concurrent computation is supported by multiple processing unitswhile in the former case asingle

processing unit aternates between the actions of each component. Hence, an enterprise compute

1 TheonlineJava™Tutorial canbefoundatht t p: / / j ava. sun. coni docs/ books/t ut ori al /i ndex. ht i .
This quote can be found on the “Creating a GUI with JFC/Swing” trail in the “Using Other Swing Features’ lesson
entitled “How to Use Threads.”

server with multiple CPUs might perform actual concurrency whileadesktop computer with asingle
CPU performs apparent concurrency. Perhapsthe Internet isthe largest example of a computational
system that performs actua concurrency.

Concurrent, computational systems are very complex, and this has placed a great burden
on those who design such systems. | believe that much of the complexity associated with concur-
rent systems is based on the sequentia style of thinking engaged in by humans. Human sequential
thought patternsare poorly matched for describing, comprehending and building concurrent systems,
especially given the magnitude of many of the concurrent computational systems being built.?

Perhapsthemore practical difficultieswith concurrent programming arerel ated tothe prob-
lem of guaranteeing that di sparate componentsin aconcurrent system haveknowledgethatisconsis-
tent with the knowledge of other components. Consider areal world “soccer mom” example: mom,
her teenagers, the pets and other related persons are all components in a concurrent system. Incon-
sistent knowledge in such a system can lead to unwanted behavior: the soccer mom dropping the
dog off at the veterinarian on the wrong day because of a missed answering machine message from
the vet. Inconsistent knowledge can also lead to unnecessary wait periods:. the teenager waiting for
mom to pick him up after soccer practice and not realizing that mom expects him to bike home.

Easing the burden of the designers by managing the complexity of concurrent system de-
signhasbeen, inpart, thegoal of the el ectronicdesign automation (EDA) community. Onehighlevel
technique for managing design complexity is through component-based design. Component-based
design leverages the natural partitioning of a concurrent system into components. A component-
based design approach presumes a mechanism for information transfer between components and a
mechanism for computation of the transferred information. The mechanisms for information com-
munication and computation vary across different types of systems that might be described by a
component-based design approach. For example, the communication style of componentsin a cel-
lular phone may be quite different from the communication style in a medical device control unit.
Informally, the characterization of information transfer and computation are jointly referred to asa

model of computation (MoC).

2| am confident that there are many who disagree with my assertion that humans think sequentialy. If anyonein so-
ciety thinks concurrently, surely it is the soccer mom dealing with along shopping list, rowdy teenagers, dinner time and
dirty pets; | contend that soccer moms are at best engaged in apparent concurrent thinking. Nevertheless, | will not vig-
orously argue this point and instead will |et the copious literature on the difficulties of concurrent programming serve as
my evidence.

In atypica computational system, the MoC associated with components of one part of
the system can be quite distinct from that of componentsin a different part of the system. For this
reason, a heterogenous set of MoCs is often necessary for specifying a complete system. While a
model of computation specifies how components of a particular MoC interact, it says little about
how interaction occurs across the boundary of two MoC's. In thisdissertation, | present atechnique
for dealing with communication between components of different MoC’s. My approach appliesto a
specific class of models of computation that are well suited for systems in which components have
autonomous control. In the remainder of this chapter, | will consider component-based design and
in so doing | will establish the background for heterogeneous MoCs and severa other problemsfor

which my dissertation work provides a solution.

1.1 Component-Based Design

Component-based designisapplied in many disparatefiel dsincluding object oriented pro-
gramming, software engineering, formal semantics, and system level EDA. The various communi-
ties that use a component-based design approach tackle different problems with unique solutions.
Many of these solutions can be leveraged by multiple communities. Considering multiple commu-

nities and their varied techniques can provide the breadth upon which new solutionswill arise.

111 Object-Oriented Programming

Object-oriented programming places componentsat the core by equating componentswith
software objects. An object is a set of variables with a set of methods that may operate on those
variables and/or parameter data. The application of object-oriented techniquesto a software system
results in a system of interacting objects. Each object maintains state based on the values of the
variables it contains. The behavior of an object represents how its functions can be invoked and
whether such invocationsimpact the object’s state. Note that variables may be objects themselves.

The decomposition of a system into objects is fundamentally about managing complex-
ity by dividing and conquering. Grady Booch, a pioneer in object-oriented design, cites two ba-
sic approachesfor dividing and conquering through decomposition: algorithmic decompositionand

object-oriented decomposition. Algorithmicdecompositionbreaksasysteminto moduleswhere each

moduleis astep in alogicaly sequential process. In object-oriented decomposition, objects each
have independent behavior and state and hence need not operate in any logically sequential manner.
Booch argues that while object-oriented models may not be superior to agorithmic decomposition
models for all systems, they are superior more often then not [Booch, 1994].

Booch defines object-oriented techniques as having four major elements and three minor

elements. | will present five elements that are most relevant to this work.

1. Abstraction

An abstraction focuses on a set of essential characteristics of an object relative to a given
perspective. Abstraction resultsin a particular interface for an object where the interface is
amenable to arelevant perspective. The notion of abstraction isused in everyday life when-
ever peopleagreetofocuson certain similaritiesand ignore certain differencesfor comparing a
set of entities. Hence, we apply abstraction when, for example, we define the notion of house-
hold pets. There are clearly many differences between dogsand cats, but from the perspective
of domestication and animal companionship, dogs and cats both can be defined as household
pets.

Abstraction playsacentral rolein the object-oriented design process. Abstractionimpactsthe
particular details that need to be implemented for a given system being designed. Consider
how abstraction might impact the design of a database for storing music. One perspective
might place emphasis on the song artists. Another perspective might emphasize the genre of
the songsin the database. Still another perspective might focus on thetitle of the songs. Dif-
ferent perspectivesimpact the database’sinterface design.

2. Encapsulation
While abstraction determines an interface, encapsulation determines the implementation of
an interface. Through encapsulation, an interface is separated from its implementation. One
technique for accomplishing encapsulation is information hiding. In essence, the details of
an interface’s implementation are hidden from view. Semantically, encapsulation resultsin a

has-arelationship. A typical object has-avariable.

A real world example of encapsulation isrealized whenever thereis a spokespersonfor a cor-

poration or political body. When the press questionsalarge corporation about recent profitsor

about itsrolein legal proceedings, the question is typically answered by a single spokesper-
son. Even though the single spokesperson gives a statement, we know that thisstatement isthe
result of numerous meetings, phone calls and board room debates. Neverthel ess, these details

are hidden from the view of the press to simplify the process.

. Modularity

Modularity is where the notion of objects enter into object-oriented design. Modularity is
where we decompose a system. In so doing, we partition an abstraction into discrete units:
objects. An abject serves as a boundary within which a single abstraction lives. Given the
use of objects, it is often advantageous to maximize reuse. The reuse of an object is possible
if it can be used by different applications. Efficient reuse can play a powerful rolein object-
oriented design because it allows the time spent on implementating an object to be amortized

over severa applications.

Closely related to the notion of an object isthe notion of aclass. An object isan implementa-
tion whileitsclassisthe blueprint. Presumably, the classfor ahuman beingisrealized in that
person’sDNA. Theclassfor abicycleisrealized in the design specs stating the characteristics
of itstires, gears, pedalsand handlebars. For asingleclass, severa objectscan berealized and
each object hasits own identity. Two bikes might be designed from the same blueprints but

they are distinct bikes that can exist on different corners of the globe.

. Hierarchy

Hierarchy prioritizesa set of abstractions. Such a prioritization is necessary because for most
systems, a large number of abstractions are possible and it is necessary to organize the ab-
stractions. Let’sreturn to our household pets, the cat and dog. Asidefrom household pet, itis
possibleto abstract cats and dogs according to their mammalian characteristics, the number of
limbsthey have, and the color of their fur. Hierarchy ordersthese different abstractions. Each
abstraction may result in a different set of classes. The household pet classes are cats, dogs
and perhaps goldfish and turtles. The mammalian classes include cats, dogs, cows, whales

and human beings among other mammals.

Semantically, hierarchy resultsin an is-a relationship. An is-arelationshipistypically real-

ized through inheritance. Inheritance prioritizes abstractions by hierarchically layering them

on top of one another. Basic or more fundamental abstractions exist towardsthe top of the hi-
erarchy while more refined and detailed abstractions exist toward the bottom of the hierarchy.
Note that in general, there is not necessarily onetop or one bottom of the hierarchy. If aclass
inherits characteristics from another class due to their relative positionsin a class hierarchy,
then we say that the former is a subclass and the latter is a superclass. A possible hierarchy
might be maemmal — household pet — dog — light brown dog. Thus, a household pet

issamammal; likewise a dog is-a household pet; and so forth.

Hierarchy can also be viewed as a has-a relationship. A has-a relationship focuses on con-
tainment and in object-oriented programming considers how objects contain one another. If
object A hasabject B asoneof itsvariablesthan A contains B. The has-ahierarchy foundin
government systems serves as a good example: nations have states have counties have cities
have neighborhoods. In this example hierarchy, nation is the superclass with its immediate

subclass being state.

5. Type
Typeisclosely related to the notion of class. Typing places constraints on how abstractions
can be combined and alows the designer to enforce design decisions. Unlike the four major
elements presented above, Booch describestype as aminor element of object-oriented design.
He considersit important but non-essential. There are examples of object-oriented languages

that are not typed (e.g., Smaltalk).

There are two key conceptsin typing. Thefirst concept isrelated to rigor: how rigorously is
typingenforced. A strongly typed language detects at compil etime whether typing constraints
areviolated. A weakly typed or untyped language loosens (to a small or large degree, respec-
tively) this detection. The second concept determines how the names of variables are bound
to (or associated with) types. Static binding means that variables are bound at compile time.
Dynamic binding (or late binding) means that the types of some variables are not known un-
til aprogram is actualy run. The interaction of typing and inheritance is polymorphism. In
polymor phism, asingle variable name may represent objects of many different classesthat all

have a common superclass.

Object-oriented techniques are generally applied within the context of software. Nevertheless, the

term “object” wasoriginally used within ahardware context and was first associ ated with descriptor-
based architectures and later capability-based architecturesin the early 1970’s. These architectures
served to closethe gap between highlevel languages and the low level hardware that was being con-
trolled. Many fundamental ideas of object oriented programming first appeared in Simula 67 [see
Booch, 1994, pg. 37]. Smalltalk evolved the conceptsin Simula by requiring all objects to instan-
tiate a class. Dijkstrawas thefirst researcher to formally speak of composing systems as layers of
abstractions [Dijkstra, 1968a]. Parnas introduced the idea of information hiding [Yourdon, 1979].
Hoare contributed with histheory of types[Nygaard and Dahl, 1981, pg. 460]. Object-oriented pro-
gramming isexperiencing ahigh point of sortsaswe exit the 20" century through the Java program-
ming language which enforces object-oriented programming in a manner that has not widely been

Seen prior.

1.1.2 Software Engineering

Software engineering is the organized production of software using a collection of prede-
fined techniques and notational conventions[Rumbaugh et al., 1991]. Although software engineer-
ing asacommunity isvery diverse, agreat deal of effort hasbeen expended on extending and refining
object-oriented techniques. In particular, there has been emphasis on specifying object models and
informalizing their reuse.

The Unified Modeling Language (UML) is an attempt at facilitating the specification of
an object model [Booch, Rumbaugh, and Jacobson, 1999]. The UML is a graphical language for
specifying an object-oriented model. The building blocks of UML are things, relationships between
things and diagrams. Things are the objects that make up a model. Examples of relationships be-
tween things are the is-aand has-a rel ationshi ps between objects. Diagrams serve as graphical tools
for representing a set of things. Different diagrams are employed depending on the types of things
being represented. Example diagrams include class diagrams, object diagrams and statechart dia-
grams.

Design patter nsare object-oriented sol utiontemplates; they are methodol ogiesfor reusing
tried and true design approaches. 1n asense, design patterns extend the fruits of UML by canonizing
them. Design patterns have evolved from years of object-oriented design. It became apparent over

timethat certain common designswere being applied over and over to different problemsthat shared

essential qualities. Design patterns encourage design reuse. Objects that are good implementations
of aparticular design can potentially be reused aswell. A design pattern hasfour essential el ements

[Gammaet al., 1995].

1. Pattern Name
The pattern name allows usto refer to a particular design and serves as a member of avocab-

ulary of patterns. Ideally, the name should be succinct but meaningful.

2. Problem

The problem provides context and determines when a pattern should be used.

3. Solution
The solution describes the el ements of the particular pattern, their relationships, and collabo-

rations.

4. Conseguences
When choosing any design pattern there are alwaystrade-offs. The designerismade explicitly

aware of the trade-offs by alisting of pattern consegquences.

Software engineering as a field subsumes the field of object-oriented techniques. Boehm wrote a
classic survey paper that brings to light the problematic trends of software design [Boehm, 1976].
The UML evolved from Booch and Jacobson’s Object-Oriented Software Engineering (OOSE) ap-
proach and Rumbaugh’s Object Modeling Technique (OMT) in the mid-1990’s. The notion of soft-
ware design patternswas borrowed from thefield of architecture. Christopher Alexander recognized
the existence of design patterns in building houses and towns [Alexander et al., 1977]. The “gang
of four” (Gamma, Helm, Johnson and Vlissides) adapted patternsto software by codifying 23 com-
monly used patterns [Gamma et al., 1995]. There have been several extensionsof their initial set.
A pictureis worth athousand words and one of the key benefits of the UML community
aswell asthe gang of four istheir emphasis on graphical representations. Unfortunately, none of the
23 patterns offered by the gang of four are explicitly intended for concurrent systems. Althoughitis
true that each pattern offers structure that can be used to specify relationshipsbetween components
within a concurrent system they include no description of how execution should occur. Concurrent

systems are often dealt with independent of the structure of a system and often books on concurrent

systems emphasize logic [Andrews, 1991; Schneider, 1997]. Graphical representations of concur-
rent systems can help to clarify meaning and serve to convey ideas between designers. There are
very few well accepted graphical techniques in the concurrent programming community and cer-
tainly there are no canonical techniques. In Chapter 2, | offer a graphical technique that is easy to

understand and suitable for richly representing concurrent programs.

1.1.3 Formal Semantics

Intheformal semantics(or formal methods) community, what would be considered acom-
ponentisreferred to asaprocess, agent or actor. Theformal semanticscommunity typically reverses
the efforts of the other communities spoken of thusfar. Rather than emphasizing the decomposition
of asystem, formal semanticists study the systems that result from compositions of processes. For
thisreason, aformal semantics system is often referred to as a process algebra - the elements of a
process algebra are processes and the a gebra consists of operations for composing processes. The
desired goal of aprocessalgebraisto show that properties about a composition are guaranteed given
that the processes being composed satisfy certain criteria. The attainment of this goal means that
process algebra can be used to mathematically verify characteristics about a system being designed.
Unfortunately, the degree to which process algebra are successful at attaining thisgoal islimited.

Formal semanticscomesin many different flavors with each flavor represented by apartic-
ular modeling system. Examplesinclude Tony Hoare's Communi cating Sequential Processes (CSP),
Robin Milner’s Cal culus of Communicating Systems (CCS) and Gul Agha' s Actor’s Model. A con-
cept that is shared by most systems of forma methodsis the separation of communication from con-

current computation. This separation is made clear by the words of Robin Milner:

“Each action of an agent is either an interaction with its neighbouring agents, and then
itisacommunication, or it occurs independently of them and then it may occur concur-
rently with their actions [Milner, 1989].”

Communication is an action that is shared between a set of processes. Computation is an interna
action that isindependent of other processes. The separation of communi cation from computationis
avery powerful abstraction and can be thought of as extending an object by partitioningitsfunctions

into an external/internal dichotomy. Formal semantics give meaning to objects.

10

At thehighest level there are two mechanisms by which processes or components commu-
nicate. Shared variable communication involves a globally accessible repository of data that pro-
cesses write to and read from. A process makes a portion of its state available to other processes
through this shared variable. The critical concern in this mechanismisin how to make surethat the
state of the shared variableis consistent with the intentions of the processes. A real world example
of thisisrealized in ajoint bank account shared by a husband and wife. If the husband and wife si-
multaneously attempt to retrieve money from the single account from separate branch locations, the
bank must make surethat it does not give out more money then isavailable. The fundamental solu-
tion to this problem is based on mutual exclusion. Only one patron can gain retrieva access from a
bank account at atime.

Message passing is the second fundamenta style of communication. In message passing,
components communicate through channels. A component must have a channel for each other com-
ponent it wants to communicate with. Communication through a channel falls into two categories:
asynchronousand synchronous. Synchronous message passing requires both the sender and receiver
connected by achannel to be synchronized when acommunication occurs. In synchronous message
passing, the notion of communication is atomic. Both the sender and receiver must be simultane-
ously engaged during the duration of the communication. Anexample of thisstyleof communication
occurswith the passing of the baton during arelay race. Asynchronousmessage passing does not re-
quire sender and receiver to be simultaneously engaged. Aslong asroomisavailableinthe channedl,
a sender may place a message in the channel and then continue with other activitiesindependent of
whether the receiver reads the message. CCS and CSP are both examples of synchronous message
passing systems. Gilles Kahn's Process Networks model is an example of asynchronous message
passing.

Computation deals with two questions: when? and how? The when question addresses
how tightly coupled the concurrent activities of processes are with one another. At one extreme,
processes execute their computationsin lock-step. Thisapproach isreferred to asthe synchrony hy-
pothesisand assumes that processes alternate between phases of simultaneously computing and then
simulateously communicating with one another. The oppositeextreme assumesthat thetiming of the
computation of one process does not necessarily overlap at all with the computation of other compo-

nents. Some systems fall in the middle between the synchronous and asynchronous extremes. The

11

notionsof synchrony and asynchrony mentioned in thisparagraph should not be confused with those
associated with communication. Here we are simply considering whether processes jointly enter
their computation or communication phases. A system of processes could adhere to the synchrony
assumption yet communicate through asynchronous message passing.

Forma methods haverootsin the study of concurrent systemsand programming language
semantics. Dijkstracan be credited as one of the founding pioneers of both of these communities.
Dijkstra [1965] introduced the notion of a critical section. A critical section is aregion of a pro-
gram that accesses a shared variable and requires an entry/exit protocol. The entry/exit protocols
typically require some sort of mutua exclusion. Dijkstra also introduced guarded commands and
non-deterministic control, both of which are instrumental in many process algebras.

Kahn'sProcessNetworksmodel wasfirst introducedin 1974. A key feature of processnet-
worksisthe guarantee of determinacy given that certain reasonable constraints are obeyed. Hoare's
CSP and Milner’s CSP independently offered very similar semantics to one another and were pre-
sentedinthelate 70’s. A host of derivativesof both CSP and CCS sproutedin response. Recent activ-
ity informal verification has been valuablewithinthe formal semantics community. Asan example,
Alur and Henzinger [1996] proposed the Reactive Modules model as a system using the synchrony
hypothesis but with the possibility of modeling a variety of systemswith different communication

and computation schemes.

114 System Level EDA

The system level EDA community brings interoperability and heterogeniety to the table.
Whileprocessa gebrasgenerally incorporateasinglemodel of computation (MoC), systemlevel de-
signers make no such assumptions. System level designers focus at the highest level and therefore
require meta-models for describing systems. From the point of view of the system level designer, a
complete system requires a variety of communication and computation styles. For thisreason, the
toolset of the system level designer typically consists of a framework for incorporating heteroge-
neous semantics. A framework is a language for describing languages. An example framework is
the Tagged Signal Model [L ee and Sangiovanni-Vincentelli, 1997]. The tagged signal model uses a
set theoretic approach for describing communication and computation of components.

The use of multiple MoCs increases the richness of a system level design tool, but at the

12

expense of certain costs: multiple MoCs require MoC interaction and this interaction must be well
defined. The question of heterogeneous semanticsisoneof the central concerns of systemlevel EDA
and | address thisissue heavily in Chapter 3.

System level designis arguably the least well understood design community of those dis-
cussed. System level designersborrow techniquesfrom each of the other communities and integrate
thefruits of each community’sharvest. For thisreason, the boundariesof systemlevel EDA are par-
ticularly malleable. The indefiniteness of system level design offers both a great challenge as well
as a great opportunity.

1.2 Abstracting Component-Based Design

At this point we can digest a broad set of information associated with each of the previ-
ous design communities. Indeed, it isworthwhileto apply some of the techniques we' ve learned to
manage the materia just presented. One way to organize the information is to consider how reuse

ability evolves with the progression of the four communities presented.

¢ Object-Oriented Programming

Reuse of objectsis enabled.

¢ Software Engineering

Reuse of object specificationsis enabled.

e Formal Semantics

Reuse of communication and computation primitivesis enabled.

o SystemLevel EDA

Reuse of models of computation is enabled.

An equally insightful way to organize the communities is to consider their results with respect to

syntax and semantics:

¢ Object-Oriented Programming

Syntax: Structure over space.

13

¢ Software Engineering

Syntax: Structure over time.

e Formal Semantics

Semantics. The meaning of object to object interaction.

e System Level EDA
Semantics. The meaning of MoC to MoC interaction.

Component-based design as an umbrellaterm can leverage resultsfrom each of the design communi-
tiesabove. Based on thelayered abstractionsaccording to reuse or syntax/semantics, the component-
based design community can select the appropriatelevel at which tofocus. | will be doing precisely

thisthroughout my dissertation.

1.3 Dissertation Outline

This dissertation describes three research accomplishments. The first contributionis pre-
sented in Chapter 2 and addresses the difficulty of modelling concurrent systems. Modelling concur-
rent, computationa systemsis difficult and there are no graphical toolsthat sufficiently characterize
even the simplest concurrent systems. In Chapter 2, | introduce the diposet. A diposet isaformal,
mathematical structure that is similar in nature to a partially ordered set. The rigorous characteri-
zation of a diposet facilitates mathematical proofs and alows the diposet to serve as a foundation
for precise description of semantics. In particular, a diposet is suitable for describing concurrent,
computational systems. Using adiposet to represent concurrent systemsis distinct from traditional
concurrency methods that instead focus on logic. Diposetsuse an order-centric approach that offers
insight into the relative timing of eventsin a concurrent system. A key advantage of the diposet is
that it is amenable to simple and intuitive graphical depiction.

An example of asequential, nested diposet can be found in Figure 1.1. Each nodein adi-
poset represents an event in a concurrent, computational system. The arrows with black arrowheads
represent an order relationship between events. In Figure 1.1, the arrow between nodesd and f in-
dicates that event d precedes event f. The arrows with white arrowheads represent a containment

relationship between events. The arrow between nodes ¢ and d in Figure 1.1 indicatesthat event d

14

o o o o o
} }
®g @ f
}
o
o 'Y
?k
| °
° ol on
?0 p
° ° ®q
} b
o ° ®s
o oV }
} *
°: o’ °:

Figure 1.1. A Sequential Nested Diposet

is contained in event c.

While the contribution of Chapter 2 is oriented towards the formal semantics community,
Chapter 3 presentsa system level EDA contribution rel ated to the interaction of heterogeneous mod-
els of computation. A difficulty in the execution of a network of components with heterogeneous
models of computation is how much the order of execution impacts the computed results. More
specifically, how much does the order of data consumption on input channels by message passing
components impact the execution of a network of such components. It is known, for example, that
Gilles Kahn's Process Networks (PN) model of computation is such that the order of execution of
components has no impact on the resulting stream of output data [Kahn, 1974]. It was not clear
whether the order of data consumption on input channelswould alter the execution output in a net-
work of PN components.

Unfortunately, unlike PN, most other models of computation offer very littleinsight into
therelation between execution order and executionoutput. My contributionin Chapter 3isthedevel-
opment of away for characterizing thisrelation. | refer to the characterization asreorder invariance.
Asdiscussedin Section 3.3.2, amodel of computationisreorder invariantif theprocessof reordering

a component’s communications with neighboring componentswill not impact the safety or liveness

15

of the network of components. Chapter 3 leverages the work of Chapter 2 by using diposets.
Chapter 4 presents my third and final contribution by describing my implementation of
the work found in Chapter 3. The results of this chapter involve extensive use of software engineer-
ing and object-oriented programming techniques. My implementation is part of the UC Berkeley
Ptolemy |1 project under the leadership of Professor Edward A. Lee. Ptolemy Il isamodelling and
design tool written in the Java™ Programming Language. Chapter 5 concludesthe dissertationwith

references following.

16

Chapter 2

The Semantics of Concurrent Systems

Semanticsisa strange kind of applied mathematics; it seeks profound definition rather
than difficult theorems.
- J.C. Reynolds, 1980t

Ensuring proper execution of complex, concurrent, computational systems requires great
care. Such care can be realized through formal semantics. In this chapter, | present an approach
to forma semantics that focuses on the types of relationships that occur between componentsin a
complex, concurrent system. The relationships| am concerned with are the order relationship and
the containment relationship. The primary contribution of this chapter is the diposet. | created the
diposet to facilitate modeling order and containment in a single mathematical entity. The diposet is
compact, precise and amenable to graphical representation.

My emphasis on order and containment is distinct from other expositions on concurrent
systems and programming language semanticsthat instead chooseto focus on logic[Andrews, 1991,
Magee and Kramer, 1999]. For convenience, | provide an overview of traditional approachesto se-

manticsin Appendix A.

2.1 The Semanticsof Concurrent Programs

A concurrent program specifies a set of two or more processes that are coordinated to per-

form atask and a set of resources that are shared by the processes [Milner, 1989; Andrews, 1991,

'R. D. Tennent, Semantics of Programming Languages, (Prentice Hall: London, 1991), p. 3.

17

Magee and Kramer, 1999; Schneider, 1997]. Each process consistsof asequential program made up
of a sequence of instructionsand this sequence is often referred to as a thread of control or thread
for short. Because each thread is a sequence, the instructions contained within a thread are totally
ordered; i.e., given two distinct instructions, a and b, either a is before b or b isbefore a.

The coordination of threads requires communication between them so that when appro-
priate, threads may maodify their activites based on information from other threads. Communication
is accomplished by the shared resources and is realized through communication instructions or syn-
chronization. In some cases a shared resource might be a conduit through which communication
messages are transferred. In other cases a shared resource might be a memory location that multiple
threads have read/write access to. While communication is necessary to coordinate threads, undis-
ciplined communication can lead to major problems. If two or more threads access the same shared
resource, they can potentialy interfere with one another. There are many different types of inter-
ference but at its core, interference occurs when two or more processes attempt to simultaneously
change the state of a shared resource.

Interference is one of the fundamental problems faced in concurrent programming. The
possibility of interference results in great emphasis being placed on the ordering of instructionsin
concurrent programming. If two instructions from different threads modify a common resource,
it is essentia that one instruction happen before the other so that interference is avoided. Adding
order constraints can be effective in preventing interference; unfortunately, lavish use of ordering
constraints can result in incomplete execution of a concurrent program. Consider for example two
threads, A and B, such that thread A isinstructed to wait on a particular instruction of thread B. If
thread B decidesto not invoketheinstruction, perhapsin lieu of amorefavorable option, then thread
A will end up waiting forever - an undesirable result. For these reasons, concurrent programming
can be viewed as the application of techniquesand methodol ogiesfor enforcing an appropriatelevel
of ordering on a set of multithreaded instructions.

The above discussion of ordering constraints in concurrent programming highlights two
fundamental classes of problems: safety and liveness. Safety is the property that no bad thing hap-
pens during the execution of a program [Andrews, 1991; Schneider, 1997]. Interference is an ex-
ample of abad thing. Livenessis the property that something good eventually happens [Andrews,

1991; Schneider, 1997]. Livenessisviolated if a program’s execution terminates prematurely. All

18

Thread A Thread B

Figure 2.1. Two Communicating Threads

errors found in aconcurrent program can be stated in terms of safety and liveness. These definitions
of safety and liveness have afoundation in mathematical logic. | prefer to cast the definitionsinto a
framework based on ordering. In the context of ordering, safety isviolated in a concurrent program
with too few ordering constraints; livenessis violated in aconcurrent program with too many order-

ing constraints. In the following we will discuss methodologiesfor describing concurrent systems.

2.1.1 Concurrency and Order

Figure 2.1 can bethought of asasimpleconcurrent programin that it specifiesthe ordering
of instructionsinaconcurrent program. Thread A consistsof instructionse, b, ¢, dand e whilethread
B consists of instructions f, g, h,7 and j. Note that the arrows indicate instruction ordering such
that the arrowhead indicates the preceding instruction; e.g., in thefigure, instruction « occurs before
instruction b.

The angled arrow in Figure 2.1 indicates an ordering constraint imposed by communica
tion. Thearrow doesnot indicate polarity of the communication but rather servestoillustratethe or-
dering constraint that the communication imposes. Asshown, instruction /2 must occur after instruc-
tion b. Implicitly, instructions+ and 7 must aso occur after instruction b. Such constraints between
instructions in separate threads would not exist if not for the communication between the threads.

Notethat it is not possibleto determine the relative ordering of al of theinstructionsin Figure 2.1.

19

Interleaving 1 Interleaving 2 Interleaving 3 Interleaving 4 Interleaving 5

o | 2@ e Ce Ce
Thread A Thread B l i

b ® c® c a a@®

‘e be dl bi de

de® de bl di

b@®
Figure 2.2. Sequential Interleavings

In particular, we can not determine whether instruction ¢ occurs before or after instruction g. In gen-
era, a concurrent program will specify ordering constraints on only a subset of thread instructions.
If al instructions between distinct threads were totally ordered, the result would be a single thread.

The absence of an ordering specification is usually taken to indicate that relative ordering
isinconsequential. In other words, the specification in Figure 2.1 indicates that instructions ¢ and g
can beredlized as ¢ followed by ¢ or ¢ followed by ¢; either realization is alowed and the choiceis
arbitrary. The notion of arbitrary ordering of unordered instructions can be applied to al of thein-
structionsof aset of threads and resultsin aninterleaving. Aninterleavingisaseguentia realization
of aset of threadsthat doesnot violateany of the ordering constraintsof thethreads. Figure2.2isan
example of aninterleaving. Note that threads A and B can beinterleaved in either of the five ways
shown. What this means is that if the concurrent program specified by Figure 2.2 were executed,
any of thefive sequential orderings could represent the actual execution. In fact, each execution can
randomly turn out to be any of the five orderings even without changing parameters! Multipleinter-
leavingsfacilitate both apparent and actual concurrency. In both cases, the goal isto ensure that the
sequential realization/model is correct; i.e., equivalent to what the designer wants.

Unfortunately the existence of multipleinterleavingsfor asingle concurrent program spec-
ification leadsto amajor difficulty with concurrent programming. Thesize of the set of interleavings
for agiven program istypically unmanageably large. In general, given NV threads that each execute
M distinct non-communication instructions, there are

(NM)!
(MDY

possibleinterleavings. Five threads with ten non-communication instructionsresult in over 4.83 x

20

103! possibleinterleavings.

2.1.2 Representing Concurrent Systems

A key difficulty in designing and implementing concurrent systems is the absence of ef-
fective tools for specifying and representing such systems. Representation tools are extremely im-
portant in the design process. Representation tools aid designersin communicating with each other
about agiven design aswell asin finding errors. Graphical representation tools are especialy help-
ful in designing software. For example, graphical representation is the primary thrust of the UML
movement [Booch, 1994; Rumbaugh et al., 1991]. | will consider graphical representation toolsfor
concurrent programming. In previous sections | have shown several figures (e.g., Figures 2.1 and
2.2) in an attempt to graphically represent concurrent programs. Unfortunately, these graphs have
significant shortcomings.

In this section, | survey four approaches that are used to graphically model concurrent
systems and discuss the pros and cons of each. The four approaches | survey are partially ordered
sets, interval orders, graphs and Petri nets. | chose these four modeling techniques because of their
widespread use and mathematical rigor [West, 1996; Neggers and Kim, 1998; Peterson, 1981]. My
metric for measuring these four approaches will be their ability to represent both containment and
order simultaneously. | will show that using this metric, each of these techniquesfalls short. | will
then propose a new formalism for more effectively representing concurrent systems with contain-

ment and order; | refer to thisformalism as a diposet.

Partially Ordered Sets

Definition 2.1. PARTIALLY ORDERED SET

Let X beaset. A partial order, R, on X isabinary relation that is reflexive, anti-symmetric and
transitive. An ordered pair (X, R) issaid to be apartially ordered set or aposet if R isapartia
order ontheset X. O

Thethree conditionson R holdfor all «,y, 2 € X asfollows
o Reflexive: (z,2) € R

e Anti-Symmetric: (z,y) € R,(y,z) € Rimpliesz = y

21

o Transitive: (z,y) € R,(y,z) € Rimplies(z,2) € R

I will write < for R suchthat (z,y) € Rifandonly if 2 < y; similarly (y,z) € R if and only if
y < z.2 Other common notationsfor R includeC and <. If z < y or y < = wesay that = and y are
comparable. If z and y areincomparablewewritez || y. We say that y covers z if 2 < y and there
isnoelement z € X suchthat z < z < y. Theset X of apartially ordered set is called the ground
set. If al elements of the ground set are comparable, then the set is called atotally-ordered set or a
chain. If none of the elements of the ground set are comparable, then the set is called an anti-chain.
Theup-set,) C X, of element y isdefined suchthat z € ¢ = y < x. We write the up-set of
element y as y,p—sc:. The down-set is defined in asimilar fashion.

Partialy ordered setscan be graphically represented by Hasse diagrams. A Hassediagram
isagraph in which each vertex or point corresponds to one element of the ground set. An arrowed-
lineis drawn from point z to point y if y covers 2.2 If weinterpret the partial order as representing
precedencesuchthat « < y if y precedes z, then Figures 2.1 and 2.2 are exampl es of Hasse diagrams.

For clarification, notethat b is covered by « in Figure 2.1.

Program 2.1. EXAMPLE SEQUENTIAL CODE

public void start() {
a = val;

}

public void conpute() {
do();
undo();

}

public void finish() {
a = 0,

}

It would seem that partially ordered sets are a natural way to express the ordering rela-

tionshipsin concurrent programming systems. If we let each element of a set represent amethod or

?Note that | have chosen to use reflexive notation so that < reads “less than or equal.” Alternatively | could useir-
reflexive notation such as <, read “lessthan.” Reflexive notation as givenin the definition of partially ordered set defines
therelation, R, asaweak inclusion while irreflexive notation definestherelation, R, asastronginclusion. In some cases
the relation associated with strong inclusion is called an order as opposed to a partial order.

? Alternatively, Hasse diagrams can be drawn with arrows from « to y if = coversy. Pay attention to the orientation
when viewing a Hasse diagram.

22

Poset implying that do() and Poset implying that do() and undo()
undo() occur after compute() are incomparable with compute()
start() @
start() @
compute()

do()
ol T
i undo()
undo()
i finish()
finish()

Figure 2.3. Insufficient Poset Representations of Program 2.1

function, then partially ordered sets can represent a program of method calls. Unfortunately, posets
are not expressive enough to accurately represent even very simple programs. Consider the code
fragment found in Program 2.1 (written in Java™ syntax) where we assume that the methods do()
and undo() do not call any other methods.

Assume athread that invokes start(), compute() and then finish(). A posetisnot able
to model the complete relationship between start(), compute(), finish(), do() and undo(). More
specifically, how do we relate do() and undo() to compute(). Both of the Hasse diagramsin Fig-
ure 2.3 are less than accurate. The method compute() is neither before or after do() and undo(),
yet to say that compute() isincomparableto do() and undo() is not quite right either. The method
compute() isnon-atomicin that it contains do() and undo(). The problemillustrated by this exam-
pleisthat partially ordered setscan not represent both the notion of order and the notion of contain-
ment. Order is necessary to relate start() and compute() while containment is necessary to show

that compute() isnon-atomic.

Interval Orders

Aninterval order is aspecial class of partially ordered sets. The name implies that interval orders

are amenable to graphical representation, and on the surface an interval order seems suitablefor de-

23

compute()

l l

{ \

l | | | l
{ { {

start() do() undo() finish()

Figure 2.4. An Interval Order Representation of Program 2.1

scribing elements that are non-atomic. Nevertheless, interval orders can not describe containment

and indeed they are less expressive then posets.

Definition 2.2. INTERVAL ORDER
A poset (X, <)isaninterval order if thereisafunction/ : X — [i(z),(z)]wherei(z),t(z) € R
sothatz < yin X iff t(z) <i(y)inR. O

Aninterval order correspondingto Program 2.1 isshownin Figure2.4. The primary prob-
lem with interval ordersis that they can not represent certain posets. In particular, while interval
orders can represent incomparable points, they can not represent incomparable chains. Figure 2.5
illustratesthe inability of interval order to represent chains. Given that theintervalsof «, b and ¢ are
as shown, where do we placetheinterval for d? Interval d must intersect « and b without intersecting
¢: an impossible constraint. Hence, an interval order must be free of the poset shown in Figure 2.5.

Thisprecludes alarge set of posetsand renders interval orders insufficient for our purposes.

o) C® \ [\
b d
Figure 2.5. A Parallel Chain Poset With No Corresponding Interval Order

Graphs

A graph, asits name implies, is a mathematical structure that naturally lendsitself to visual repre-
sentation. Graphs are used extensively within the field of computer science. Examples include the

representation of language grammars and network connectivity diagrams.

24

o [o @ ~ [
Graph Directed Graph

Figure 2.6. An Example Graph and Directed Graph

Definition 2.3. GRAPH
A graph G with n verticesand m edges consistsof avertex set V(G') = {vy, ..., v, } ahd an edge
set F(G) = {es,...,e,}. Each edgeis a set of two (possibly equal) vertices called its endpoints.

We writeuv for anedgee = {u, v}. If uv € E(G), then w and v are adjacent. o

Graphs areillustrated by diagramsin which a point is assigned to each vertex and acurve
isassigned to each edge such that the curve is drawn between the points of the edge’s endpoints. An
example graph is shown in Figure 2.6 (on the left). In some cases, it isuseful to add directionality
to the edges of agraph. A directed graph models such directionality and is defined in the following
definition. Anexample directed graph can befoundin Figure 2.6 (ontheright) wherearrowed curves

indicate direction.

Definition 2.4. DIRECTED GRAPH
A directed graph isagraph in which each edge is an ordered pair of vertices. We write uv for the

edge (u, v) with « being the tail and » being the head. O

The definitions above are consistent with that used in many texts on the subject [West,
1996; Chen, 1997]. Note that the edge set of a directed graph is simply arelation; eg., £(G) C
V(G) x V(G). Focusing on the fact that the edge set of a directed graph is a relation emphasizes
the shared traits between directed graphs and many other mathemathical structures. In particular, a
relation-oriented definition of directed graph makes it clear that a partialy ordered set is a special
case of adirected graph.

Graphsand directed graphsboth have definitionsfor several useful characteristics. For our
purposes, two particularly useful definitions are path and cycle. Informally, apath in agraphisan

ordered list of distinct vertices vy, ..., v, such that »;_yv; isan edgefor al 2 < i < n. A path may

25

consist of asinglevertex. A cycleisapath vy, ..., v, inwhich v, v isan edge. Thelength of apath
(cycle) vy, ..., v, isn.

Intheir basic form, directed graphs and graphs are insufficient for model ling software sys-
tems for reasons similar to those cited for partialy ordered sets. A directed graph only has asingle
relation on its set of vertices. A singlerelation will not sufficiently describe both the order and con-
tainment characteristics that are found in the typical object-oriented software program since order

and containment are distinct qualities that require individual representation.

Petri Nets

Carl Adam Petri developed Petri theory with a concern for asynchronous communication between
components and the causal relationships between events. The basic theory from which Petri nets
developed can be found in the dissertation of Carl Petri [Petri, 1962]. The definition of a Petri net

structureis found bel ow.

Definition 2.5. PETRI NETS

A Petri net structure, C, isafour-tuple, C' = (P,7,1,0). P = {p1,p2,...p,} isafinite set of
places, n > 0. T = {ty,1s,...,t,,} isafinite set of transitions, m > 0. The set of places and the
set of transitionsare disoint, P N7 = (. I : T — P istheinput function, a mapping from
transitionsto bags® of places. O : T — P isthe output function, a mapping from transitionsto

bags of places. O

Tokens can reside in (or are assigned to) the places of a Petri net. A marking i isan as-
signment of a nonnegative number of tokensto the places of a Petri net. The number of tokensthat
may be assigned is unbounded. Hence, there are an infinite number of markings for a Petri net.

A Petri net executes by firing its transitions. A transition fires by removing tokens from
itsinput places and creating new tokensin its output places. A transitionmay fireif itisenabled. A
transition is enabled if each of itsinput places contains at least as many tokens as connection arcs
from the place to the transition. Tokens that cause a transition to be enabled are called enabling
tokens. When a transition fires, it removes al of its enabling tokens from itsinput places and then

depositsinto its output places one token for each output arc.

*A bagis like a set except that it allows multiple occurrences of elements.

26

t t
Transition T 1 /—\ T 1

b2 b2
Connection (arc)

X K X K
- / | E / |
O e O N O

b3

|

Figure 2.7. An Example Petri Net With Firing

A Petri net is often graphically displayed as shown in Figure 2.7. In fact, a Petri net isa
directed, bipartitemultigraph. A bipartitegraphisagraph that consistsof two classes of nodes such
that each edge connects a node from one class to a nodein the other class. In a Petri net, every arc
(edge) connectsaplaceto atransition. A multigraphisagraph that allows multiple edges from one
node to another. Asshownin Figure 2.7, several arcs may connect a place/transition pair.

A Petri net is not sufficient for representing order and containment. Even though it con-
sistsof two classes of nodes, its bipartite nature would constrain the order and containment rel ations
to occur adjacently. It is not obvious how the containment relation could be graphically displayed
using a Petri net, thus making it difficult to represent hierarchy. In addition, Petri nets assume an
asynchronous style of communication. Whileit istruethat asynchronous communication can serve
as afoundation for synchronous communication [Brookes, 1999], asynchronous primitives can not

represent synchronous communication in a succinct manner.

2.1.3 Diposets

In the previous sections| have summarized several mathematical formalismsand critiqued their use-
fulness in the context of describing object-oriented software systems. In each case, | showed that
these formalisms were not sufficient for describing the richness of simple software systems. | have
devel oped anew mathematical structurethat | refer to asadiposet. In the remainder of thissection |

will define diposet and in subsequent sections| will make a casethat diposetsare suitablefor robustly

27

describing software systems.

The key observation with each of the mathematical structures presented thus far isthat a
singlerelationis not satisfactory for describing software systems. Oneway to deal with thisproblem
isto useapair of structuresfor describing software systems. Consider a pair of directed graphs G4
and GG such that V(G1) = V(G). For convenience | will refer to this paired directed graph as
{G1,G3}. Associated with the pair of directed graphs are two relations, £(G/1) and £(G2). Each
relation spawns various characteristics. For example, {G'1, G5} may havetwo distinct paths, p; and
p2, such that p; isassociated with (1) and p, is associated with £(G).

A paired directed graph { Gy, G2} offers the beginnings of atool equipped for describing
avariety of systems that require two types of relations (e.g., order and containment) over a set of
elements. In order to make a paired directed graph completely useful, more structure must be added.
| created the diposet tofill the need for just such a structure.

Definition 2.6. DIPOSET

Let X beaset. A diorder on X isapair of binary relationson X referred to, respectively, asthe
order relation, R, and the containment relation, R, such that R~ and Ro are both reflexive,
anti-symmetric and transitive. For al z,y € X, if (z,y) € Ro then(z,y),(y,z) ¢ Rc. Smilarly,
forall z,y € X,if (z,y) € Rc then(z,y),(y,2) ¢ Ro. A set X that isequipped with adiorder is
said to be adiposet and isdenoted (X, Ro, R¢). O

It isimmediately obviousthat a diposet is a specia case of a paired directed graph. Itis
asoclearthat (X, Rp) and (X, R) are both partially ordered sets with acommon ground set. The
ground set X of adiposet is equivalent to the set of vertices V' (= V(G1) = V(Gy)) of apaired
directed graph. The containment and order relations of adiposet, { R¢, Ro}, are equivalent to the
two sets of edgesin apaired directed graph { £(G4), E(Gs)}.

We say that theground set, X', of adiposet consistsof events. Theorder relation determines
how events are ordered with respect to one another. Consider eventsa,b € X. If (a,b) € Ro then
wesay that a <o b. l.e., event a precedes event b. If (a,b), (b,a) ¢ Ro thenwe say that a ||o b;
eg., ¢ and b are incomparable. The containment relation facilitates non-atomic events and event
containment. An event is non-atomic if it contains another event. If (a,b) € R then we say that

a <¢ b. |.e, event bisnon-atomicand containsevent a. If (a,b),(b,a) ¢ Rc thenwesaythata ||

28

b; e.g., a and b are mutually non-inclusive. Note the distinction between incomparable and mutually
non-inclusive. In the context of diposets, incomparability refers to the order relation; mutua non-
inclusiveness refers to the containment relation. Up-set is defined both for order and contai nment
and is denoted as such; e.g., up — setp and up — setc (Similar definitionsexist for down-set). An
order (containment) path in a diposet is a sequence of events ey, ..., e, suchthat e; <gp ... <p e,
(e1 < ... <o €p).

Note that adirect result of Definition 2.6 isthat Rp N R = 0. Thefact that o and R«
of adiposet do not intersect leads to two results that hold for al diposets:

i) Anevent can not contain an event that it precedes or that it is preceded by.
ii) Anevent can not be contained by an event that it precedes or that it is preceded by.

Thedigointnessof Rp and R¢ in adiposet serves as one of the key distinctions between a diposet
and a paired directed graph. In a paired directed graph {G, G2} it is sufficient for G; and G5 to
share a common set of vertices but thereis no constraint on the two sets of edges associated with a
paired directed graph. For example, it iscompletely admissablefor the edge sets of apaired directed
graph to beidentical; i.e., £(G1) = E(G3). Theintuition behind the disointnessof Ro and R¢ is
that each relation should provide orthogonal information. If the order and containment rel ations of
adiposet provide redundant information, then the usefulness of distinct relationsis undermined.

Partialy ordered sets are graphically represented via Hasse diagrams. Hasse diagrams
serveasasimpleway to represent posetswith directed graphswhere an arrow isdrawn from element
a toelement b if b covers a. Diposets utilize Hasse diagrams as well, with the notion of covering be-
ing extended to containment. 1.e., b coversa if theredoes not exist ¢ suchthat ¢ <¢ ¢ < b. Given
that b covers a according to a containment relation, we say that b is a cover container of a. To ac-
comodate both relationsin adiposet, diposet Hasse diagrams require two types of arrows. | will use
ablack arrow head to represent the the order relation and a white arrow head to represent the con-
tainment relation. Figure 2.8 displaysan example diposet. From thisfigure we can seethat event «
is contained by event ¢ and isincomparableto event d. Event b is preceded by event « and event f
is preceded by event d.

In many systems, the kind of containment that can be modelled by a diposet is not suffi-
ciently constrained. Most software systemsrequire that containment be nested. | add this additional

29

a :\.e
=4 =g

Figure 2.8. An Example Diposet

constraint with the following principle.

Definition 2.7. THE NESTED CONTAINMENT RULE

A diposet, (X, Ro, R¢), satisfiesthe nested containment ruleif Va, y, = € X, thefollowing con-
ditions are adhered to:

ConditionI: If z ||c y,then(z <¢c 2 = 2z Lo y)and (z <¢ y = = L¢ @).

ConditionI1: If z <p y,then(z <¢c 2 = 2 <p y)ad (z <¢c y = = <p 2).

A diposet that satisfies the nested containment rule is called a nested diposet. O

In plain English, Condition | says that an event can have at most one cover container. Condition
Il says that each event precedes (is preceded by) each event that its container events precede (are
preceded by). An example nested diposet can be found in Figure 2.9.

A key distinction between the Hasse diagrams of diposetsand nested diposets can be seen
when comparing Figures2.8 and 2.9. In Figure2.9itisimplicitthat « <o d by Condition || of Defi-
nition 2.7. Inasimilar fashion, we seethat ¢ <o e. These assumptions can not be madein agenera
diposet, and hence in Figure 2.8 ¢ and d are incomparable while in Figure 2.9 they are compara-
ble. Thisdistinction between the Hasse diagram for diposetsversus nested diposetsrequiresthat one
clearly state which type of diagram is being displayed, so that confusion can be avoided. Nested di-
posetsare generally more useful than diposets. For example, most computer programs have anested
structure. For thisreason, | will focus solely on nested diposetsfrom this point on and | will usethe

term nested diposet and diposet interchangeably to mean nested diposet. Severa interesting results

30

d

VA

b

@

Figure 2.9. An Example Nested Diposet

can be derived based on the nested containment rule, as the Weighted Chain Theorem® illustrates.

Theorem 2.1. WEIGHTED CHAIN THEOREM

For nested diposet, (X, Ro, R¢), ifthereexistszg € X st. Vo € X, 2o <¢ z thenall eventsin X
areincomparable.

Proof by Contradiction Supposethat not all eventsin X areincomparable. Then there must exist
twoeventsy, 2 € X suchthat either y <p z or z <p y. Consider the former case. We have
y <o z. Since zg <¢ y by the theorem statement, then we know from Condition |1 of Definition
2.7 that 29 <p z. Againreferring to the theorem statement we have zq < z. This contradicts
Definition 2.6 since an event can not be contained by an event that it precedes; e.g., the digjointness
of Rp and R has been violated. Hence our supposition was false. The aternative casesfollow in

asimilar manner. O

In considering the nested containment rule, it isimportant to be clear on what it does not

imply. In particular, note that for a given nested diposet, (X, Ro, B¢), withz,y,z € X
r<oy<cz#=a<o=z

The simplest counter example that satisfies the above statement is the following three event nested

*The intuition behind the name “Weighted Chain” is that if ever a subset of a diposet contains a minimum contained
element (e.g., an element contained by all other members of the subset), then the minimum forces the elements in the
subset to be pulled down like a hanging chain with aweight tied at the bottom.

31

L
A

A
L
A
L
A
L

/

A
[
A
[

_—— |
AL
AN

/|

Figure 2.10. A Sequential Nested Diposet (Explicit Representation)

diposet, ©, ¥,z € X:

z <g z
y<c=z

r <oy
Notethat if » <o y <¢ 2 = = <o 2 then Def. 2.6 would beviolated; i.e., Ro N Ro # 0.

Definition 2.8. SEQUENTIAL NESTED DIPOSET (THREAD)
A sequential nested diposet or thread isanested diposet, X np = { X, Ro, R¢}, forwhich 3z, €
X, cdled the maximum container of X, suchthat z <¢ z¢,Vz € X and suchthat Vz,y € X, if

2 and y have acommon cover container, then a2 <p yory <p . O

An example thread is shown in Figure 2.10. It is drawn in an explicit graphical format. Explicit
graphical format will be explained in Section 2.1.4.

Given that each event in athread has at most one cover container,® it is useful to develop

A characteristic that is true of all nested diposets.

32

anotion of depth. We define depth recursively. The depth of the maximum container in athread is
0. For any event « contained within athread other than the maximum container, the depth of = isthe

depth of its cover container plus1.

Theorem 2.2. CONNECTED THREAD THEOREM

Any two eventsin a sequential nested diposet (thread) are either related by the order relation or the
containment relation but never baoth.

Direct Proof Consider any two events x, y contained in a sequential nested diposet with ground set
X. Weknow that =z and y can not berel ated by both the order and contai nment rel ations by Definition

2.6. In terms of the rest of the proof there are three possible cases as listed bel ow.

i) If 2 and y are not mutually non-inclusivethen x and y must be related by the containment

relation and we are done.

ii) If 2 and y are mutually non-inclusiveand have a common cover container then by Defini-

tion 2.8 = and y must be related by the order relation and we are done.

iii) If 2 and y are mutually non-inclusive and do not have a common cover container then ap-
ply the following step. Select the event (either = or y) that has the greatest depth.” Without
loss of generality assume that = has agreater depth then y. If the cover container of x iscom-
parable to y than we are done by virtue of Condition Il of Definition 2.7. Otherwise, repeat
this step.

Theorem 2.3. AcycLIC DIPOSET THEOREM

A diposet can not contain order or containment cycles of length 2 or more.

Proof by Contradiction Supposethat adiposet (X, Ro, R¢) containsan order cycle of length 2 or
more. Then there must exist apath eq, ..., e, Withe; # ... # e, suchthat e; < ... <p €, <o €7.
By the anti-symmetry property of partialy ordered sets, thisimpliesthat e; = ... = e,. Hence,
our supposition must be false and the diposet does not contain a cycle of length 2 or more. Similar

reasoning applies to containment cycles of length 2 or more. This completes our proof. O

Notethat in general apaired directed graph can contain both order and contai nment cycles

"If = and y have the same depth then arbitrarily choose one or the other.

33

of any length. Aswill be shown in subsequent sections, the existence of a cycle indicates that a
system can not be modelled by a diposet but perhaps can be modelled by a paired directed graph.
In many situationsitisuseful to label the eventsof adiposet. For example, multipleevents
in a diposet’s ground set may each share a common label indicating that they represent a common
entity or labelsmay serve asabasisfor relating aclass of events. A labelling function facilitatesthis

process.

Definition 2.9. LABELLED DIPOSETS
A diposet labdling function, f : X — I, mapsthe ground set of adiposet to alabel set, 1. A
diposet that is associated with alabelling function and label set is referred to as alabelled diposet.

a

Many of theexampl e di posetsthat have been previously shownwerelabelled. For example, inFigure

29thelabe setis . = {a,b,c,d, e, f,¢} and thelabelling function is bijective.

214 Typesof Order

Thus far | have presented three partially ordered structures: diposet, nested diposet and
sequential nested diposet (thread). Nested diposetsand sequential nested diposetsare especialy im-
portant for our purposes because of the abundance of nested structuresin the field of computer sci-
ence. When considering a nested diposet, it is always the case that the order relation of a nested
diposet can be separated into two subsets: Co U Tp € Rp. Cop isreferred to as the set of com-
munication order relations and T, isreferred to as the set of threaded order relations. For any two
events, z,y € X, Co(x,y) represents a subset of order relations that are associated with = and y;
i.e, Co(z,y) C Co. Inasimilar fashion T (z,y) C To.

The threaded order relation Ty relates eventsthat are in the same thread. For any nested
diposet (X, Ro, Rc), wehave To(z,y) = 0 if 2,y € X are not part of the same sequential nested
diposet. The communication order relation C'o relates events that are not in the same thread. We
have Co(x,y) = 0 if 2,y € X are part of the same sequential nested diposet.

A simple communication order relationis Co(z,y) = (z,y). Aswill be shown in Sec-
tion 2.2.4, thisorder relation is equivaent to asynchronous communication between two threadsin

which the thread containing event y receives from the thread containing event ». A more elaborate

34

communication order relationis

Cotory)— BN € pmacio} ULl € Yitoun—seo) o
U{(2", 92" € Zdown—seto } UL (Y, 2')]2" € Bup—seto }

I will show that the communication order rel ation of Equation 2.1 isaprecise characterization of syn-

chronous message passing communication in which « and y represent the sending/receiving events

of two communicating threads (See Section 2.2.4).

Given nested diposet (X, Ro, R¢) we can write

U Co(x,y)] U [U To(w,y)] (2.2

(zy)eX XX (zy)EXxX

Ro =

We can leveragethe dichotomy foundin Equation 2.2 to simplify our nested diposet Hasse diagrams.
Recall that Figure2.10isdrawnin an explicit graphical format. By explicit | mean that al cover con-
tai ner rel ationshipsare explicitly shown. Alternatively asequential nested diposet can be represented
in an implicit graphical format. The implicit graphical representation of a nested diposet relies on

the following three rules.
i) Order relations associated with T, are drawn with avertical line.
ii) Order relations associated with C'p are drawn with anon-vertical curve.
iii) Containment relations are drawn with ahorizonta line.

Anexample sequential nested diposet that isdrawninanimplicit format isshowninFigure
2.11. Thethread drawnin Figure 2.10 isidentical to that of Figure 2.11. The only differenceisthat
theformer isrepresented explicitly whilethelatter isrepresented implicitly. In theremainder of this

dissertation, | will useimplicit representation of sequential nested diposets.

2.2 Diposetsand Concurrent Programming

Diposets are amenable to modeling a wide variety of systems including manufacturing
schedules, distributed transactions and hardware systems. Given our interests, we will use nested
diposetsto model concurrent software systems. In a concurrent system, the ground set of our nested

diposet consists of method invocations or code blocks. The label of an invocation is simply the

Key:

Re

35

® - @ - o -
? l
o o
?
o
o o
?
o
@ - ® - o
?
® o
? l
o o
o o
? C'o relations are not
° present in this diposet.

Figure 2.11. A Sequential Nested Diposet (Implicit Representation)

36

method’'s name. Hence, multiple invocations of a method share a common label. Note that declar-
ing anested diposet’ sground set as consisting of method invocations can accomodate arich class of
programming constructsincluding recursion and software objects.

do
[

@ oet
@ finish
Figure 2.12. A Nested Diposet Corresponding To Program 2.2

If the body of method « contains an invocation of method &, thenwe say that b <o a. If
the body of method a precedes method & (asin method « returns prior to theinvocation of method b)
then we say that b <, a. Consider the code fragment shown in Program 2.2. Here we see both the
notion of containment and order. The methods get() and finish() are contained within the method
do(). E.g., get <¢ doand finish <¢ do. In addition, the method finish() is ordered to occur
after the method get(). E.g., finish <o get. A singleinvocation of the method do() would result
in the thread displayed in Figure 2.12.

Program 2.2. SAMPLE METHOD CALLS

public void do() {
get ();
finish();

}

public void get() {
z1 = x + v,

}

public void finish() {
72 = z1++;

}

In some cases a hested diposet or a diposet will not be sufficient for describing a software
system. In particular, as Theorem 2.3 (the Acyclic Diposet Theorem) declares, a diposet can not
contain non-trivial cycles. In cases where inclusion of acycleis crucial, the structure of a diposet
can be relaxed and transformed into a paired directed graph. Paired directed graphs are amenable to

describing cycles because they are not beholden to anti-symmetry.

37

2.2.1 Safety and Synchronization

Recall that the key problems of concurrent programs fall into two classes: safety and liveness prob-
lems. Let us consider how nested diposets can model these constucts. Safety is solved by applying
mutual exclusionto thecritical section of codethat should not be simultaneously accessed by multi-
plethreads. A common way to guarantee safety in a concurrent programisto require lock synchro-
nization to code blocks. Only one process can synchronize with a given lock and thus access to the
block of code will necessarily be mutually exclusive.

Safety vialock synchronization can be represented with containment and order relation-
ships. Locks apply to blocks of code, thuswe can think of arealized lock as an invoked method. In
nested diposet terms, the code that a realized lock synchronizesis contained by the lock. We must
make sure that multiple realizations of the same lock are not invoked simultaneously. Thisis ac-
complished by ordering the lock invocations. This processisillustrated in Program 2.3 (written in
psuedo Java™ code) and Figure 2.13. Notethat the synchr oni zed keyword means that the lock
for the corresponding method is an instatiation of the Cbj class. A nested diposet showing a possi-
bleinterleaving of callsto methods do and undo that satisfies the synchronization lock constraints

isgivenin Figure 2.13.

Program 2.3. SYNCHRONIZED METHOD CALLS

public class Obj {
public synchronized void do() {

nmodi fy();
change();
}
public synchronized void undo() {
change();
nmodi fy();
}

private void change() {

// Atom c; contains no nethods
}
private void nodify() {

// Atom c; contains no nethods

}

38

do
Obj @ = (= @ modify
@ change
undo
Ob] @ < o< @ change
@ modify

Figure 2.13. A Possible Interleaving Of Calls To do() And undo() In Program 2.3

2.2.2 Liveness and Deadlock

Theresult of liveness problems within concurrent, computational systems are perhaps the most rec-
ognizabledifficultiesthat thetypical computer user must face. Livenessisclosely associated withthe
inter-dependenciesand rel ative speeds of autonomousthreads. Relativethread speeds are tied to the
thread scheduling algorithmsof operating systemsand such algorithmsare typically beyond the con-
trol of software devel opers. For thisreason, liveness problems have an inherently non-deterministic
nature from the perspective of the software developer. Although the problems associated with the
absence of safety can be just as devastating as those associ ated with the absence of liveness, safety is
much easier to maintain than liveness and thusfor most computational systems safety isnot amajor

issue.® Doug L ea categorizes liveness into four groups [Lea, 1997].

I) Contention occurswhen several processeswait on resources but only asubset of the processes
gaintheresources. Contentionisfundamentally related to fairnessand isgenerally adetermin-

istic probleminthat it isbased on the thread/process scheduling algorithm being used.

I1) Dormancy occurs when awaiting thread is not notified that the condition it is waiting on be-
comestrue. Thisproblemisrelatively easy to solvewith well placed “wake up” mechanisms.
For example, in the Java™ programming languageanot i fy() ornoti fyAl | () method
would be used. Dormancy istypically deterministicin that the wake up mechanisms are usu-

aly not dependent upon a particular interleaving of threads.

8While corrupt data (the result of safety problems) are farely rare, who among us has not witnessed the blue screen of
death?

39

I11) Deadlock occurs when a cycle of processes are mutually dependent upon each other at the
sametime. More precisely, N processes each wait on exclusive accessto one of N resources
while simultaneously holding exclusive access to another one of the N resources such that
each processis awaiting access to adistinct resource. Deadlock istypically non-deterministic

inthat it is dependent upon the rel ative speeds of the processes acquiring the resources.

IV) Premature Ter mination occurswhen aprocess ceases operati on unexpectedly without properly
notifying the other processes in the concurrent system. Such termination can result in both
safety and liveness problems for the remaining processes. Premature termination isakinto a

reversal of dormancy and isrelatively easy to solve given appropriate exception handling.

Each of the typesof liveness problems can cause aconcurrent programto halt in an undesirable man-
ner. Whilethey are al challenging to deal with, in my experience deadlock stands out in a class of
itsown. In the best case scenario, deadlock istied to the interleaving of the threads involved. This
means that deadlock will non-deterministically occur based on the rel ative speeds of the threads and
how the rel ative speedsimpact thread interleaving. In theworst case scenario deadl ock isnot depen-
dent upon relative thread speeds. In this case deadlock isintrinsicin the semantics of the communi-
cating threads and thereis no hope of evasion. Hence, intheworst case scenario thereis nothing one
can do while in the best case scenario one's view of the situation is blurred by randomness. Given

the heightened difficulty of deadlock, | will focus on its representation.

Definition 2.10. DEADLOCK

A paired directed graph exhibitsdeadlock if and only if it containsacycle. O

Nested diposets can not exhibit deadlock as per the Acyclic Diposet Theorem (Theorem 2.3). What
Definition 2.10 tellsusisthat a software system that can be modelled by a nested diposet can not ex-
hibit deadlock. To determineif asystem exhibitsdeadl ock, apply therelavent order and contai nment
relationships and attempt to construct a diposet model of the system. If it is possibleto apply order
and containment relationships without violating the nested containment rule and arrive at a cycle,
then deadlock can occur. In such instances the model is not a diposet but rather a paired directed
graph that is not anti-symmetric. Otherwise, the model is a diposet and by definitioniit is deadlock

free.

40

Part a; Prior to Order Constraint

Lockl Lock2 Lockl Lock2
o o o o

Part b: No Cycle

Locl Lock2 ockl ock2

Part c: No Cycle

Part d: Cycle

Lockl Lock2 Lockl
o o

Figure 2.14. Order/Containment Constraints Leading To Deadlock

Deadlock often comes about through the use of multiple synchronizationlocks. As stated
in the previous section on safety, synchronization locks that have a common label typically have an
ordering constraint that requiresthat they be comparable. In conjunctionwith the order constraint on
synchronization locks, deadl ock-prone code often implements such locks so that they are contained
by one another. This containment constraint can often contradict the ordering constraint and lead to
deadlock. ToillustratethisphenomenonseeFigure 2.14. Thefirst section (part @) of thefigure shows
a diposet consisting of two distinct threads each involving two events with the displayed labels. If

41

wetreat these eventsas the holding of synchronizationlocks, then we know that an ordering relation
must be applied between the separate threads so that the locks are not concurrent. The next three
sections of Figure 2.14 show distinct application of order constraints to the two threads. In each
case, the applied order constraints do not violate the nested containment rules. In part d of Figure
2.14 thethick linesindicate that a cycle exists - deadlock! Given the order constraintsimposed by
the synchronizationlocks, it is possiblefor this system to experience deadlock and in fact the model
in part d of Figure 2.14 is not a diposet.

Figure 2.15 consistsof an alternative configuration such that the containment constraint of
the left thread isreversed. Again, order constraints are applied to the nested diposet, however, be-
cause of the reversed containment constraint, order constraintsmust be applied inamanner different
from Figure 2.14. In no case can order constraints be applied without violating the nested contain-
ment rule and lead to cycles. Thus, the configuration of this software system is not deadlock-prone.
Notethat thereare only two waysto apply order constraintswithout viol ating the nested contai nment
rulesin Figure 2.15.

In considering Figures 2.14 and 2.15 note how the order and containment constraintscome
about in concurrent programs. Containment constraints are typically determined at compile time.
How the source code of a program is written determines what the containment constraintswill be.
Order constraints between threads are typically determined at run-time and are afunction of relative
thread speeds. This is why we show the containment constraints first followed by the order con-

straints.

2.2.3 Conservative Compile Time Deadlock Detection

Oneof thekey advantages of diposetsistheir potential for compile time detection of dead-
lock. Detection of deadlock at compile time means that the determination of the possibility of dead-
lock inasystemwill occur prior to the execution of the system. Compile time detection takes place
during a system’s design process and thus offers the opportunity for correction of the problem by
the system designers. Compile time deadl ock determination isin contrast to determination of dead-
lock at run-time. Run-time deadlock detection occurs while a system is actually executing and be-
ing used. There are many approaches for detecting deadlock at run-time [Mattern, 1989; Chase and
Garg, 1998; Lynch, 1996]. Unfortunately, detection of deadlock at run-time suffers from two prob-

42

Part a: Prior to Order Constraint

Lock2 Lockl Lockl Lock2
o o o o

Part b: No Cycle

Lock2 Lockl Lockl Lock2
.\\.y.

Part c: No Cycle

Lock | ock2

Figure 2.15. Order/Containment Constraints That Do Not Lead To Deadlock

lems. First, it is better to prevent deadlock before using a system than to simply detect deadlock
during a system’s operation. Second, a solution for deadlock while the system is being used istypi-
cally insufficient. Thisisespecially sowiththeadvent of widely available embedded systems. Many
embedded systems are of a safety critical nature such as an embedded system controlling an auto-
mobil e’ s antilock braking system. Obviously deadlock detection during the operation of an antilock
braking system will place the lives of the automotive passengersin jeopardy.

Diposets offer the opportunity for conservative detection of deadlock at compiletime. By
conservative | mean that one can determinethe possibility of deadlock, not the certainty of deadl ock.
Conservative deadl ock detection determines whether deadl ock can occur not whether deadlock will
occur. Thisis akey distinction. In general software systems, i.e., software systems with infinite-
valued variables, determining if deadlock will occur is undecidable. Undecidability stems from the

fact that the model of computation of general software systemsis Turing complete.® Determining if

? A Turing complete model of computation can implement a Turing machine. All of the processmodels of computation
in this dissertation are Turing complete.

43

deadlock will occur for a Turing complete system would require checking a search space consisting
of an infinite set of possibilities. In contrast, using a conservative deadlock detection mechanism
requires the consideration of afinite set of possibilities.

The basic approach for using diposetsto determine the possibility of deadlock at compile
timeissimple: if and only if a software system can be represented by a diposet, then deadlock will
not bepossible. If asoftware system can be represented by a diposet then that impliesthat the system
does not contain cycles which further implies that deadlock is not possible. The general algorithm

for this processis asfollows.

1) Createthe System Specification

This step ssimply involvesthe system programmer(s) writing the software program.

2) Automatically Recognize Order and Containment
Determining order and containment in the system specification can be automated by an appro-

priatetool.

3) StoretheOrder and Containment in an Appropriate Data Structure
Storage of the order and containment relationswill be similar to the storage techniques used

for binary trees and other common data structures.

4) Search for Cycles
The absence of cyclesindicates that the structure is a diposet.

The difficulty with arealization of the above algorithmisthat it will be extremely computationally
complex. Infact, it will likely be NP-Complete (see Garey and Johnson[1979]). Nevertheless, there
may be opportunitiesfor devel oping heuristicsthat simplify the deadlock detection process consid-
erably. Such heuristics are beyond the scope of this dissertation but will be part of any future work

on thistopic (see Chapter 5).

2.2.4 Communication Semantics

Communication between threads imposes an order constraint on their composite diposet.
These order constraints are precisely the communication order relations discussed in Section 2.1.4.

In this section | will discuss two important communication styles and describe their corresponding

44

communication order relationsh. Asmentionedin Section 1.1.3, message passingisoneof thefunda-
mental waysto communicate within aconcurrent system. Message passi ng communi cation assumes
that components are connected viachannel s through which messages are transmitted. There are two
types of message passing communication: synchronous and asynchronous. Synchronous message
passing requires both the sender and receiver connected by a channel to be synchronized when a
communication occurs. Asynchronous message passing does not require the sender and receiver to
be simultaneously engaged and involves a storage facility in which messages can be placed by the
sender until the receiver is ready.
Thecommunication order relationsfor asynchronousmessage passingisvery simple. Given

that the sending event is denoted = and the receiving event is denoted y, an asynchronous message

passing communication order relation for 2 and y iswritten

Co(z,y) = {(z,9)}.

In other words, must precede y. A graphical example of such arelation is shown in Figure 2.16.
Here the left thread communicates to the right thread. Event « isthe sending event and event y is

the receiving event.

/

<
o—0 =00
o =0 -0 -0

Figure 2.16. A Diposet Representing Asynchronous Communication

The communication order relation for synchronous message passing is significantly more
complex than asynchronous message passing. Given that the sending event is denoted = and the
receiving event is denoted y, a synchronous message passing communication order relation for
and y is equivaent to that given in Equation 2.1. For convenience | have rewritten Equation 2.1

below. Note that synchronous message passing is symmetric; i.e., Co(z,y) = Co(y,z). Thus,

45

x
HXXH o
o0 -0 -0 -0

<

Figure 2.17. A Diposet Representing Synchronous Communication

thereis no need to differentiate a sender and receiver. The graphical representation of synchronous

message passing is shown in Figure 2.17 in which event 2 and y are synchronous.

{($, y/)|y/ € yup—seto} U {(3//7 $)|y/ € ydown—seto}
CO($, y) =

U{($/,y)|$/ € xdown—seto} U {(y7$/)|xl € xup—seto}

2.25 An Example: PtPlot And The Java™ Swing Package

I conclude this chapter with an informative and real world example. | will demonstrate
how diposets can model the threading mechanism that is part of the Swing package of the Java™
programming language. The Java™ Swing package consistsof aset of graphical user interface (GUI)
componentsthat have a pluggablelook and feel. The pluggablelook and fedl |ets one design asin-
gle set of GUI components that can automatically have the look and feel of any OS platform (e.g.,
Microsoft Windows™, Sun Solaris™, Apple Macintosh™). Aswith al GUIs, the Swing graphi-
cal user interface must respond both to human input such as mouseclicks and text entry as well as
computer input such as new image positionsgenerated by aprogram or new windowsto display. Re-
sponding to both computer and human input is an inherently concurrent process. Swing addresses
this concurrency with a single event dispatch thread for all GUI operations.

The Swing event dispatch thread takes events (e.g., the pressing of abutton or clicking of
amouse) and schedules them to occur in asequential order. Thei nvokeAndWai t () and

i nvokelLat er () methods are available so that other threads in a program can access the event

46

dispatch thread (these methods are part of the j avax. swi ng. Swi ngUtiliti es class). The
i nvokeAndWai t () method communicates synchronously with the event dispatchingthread. The
i nvokelLat er () method communicates asynchronously with the event dispatching thread. Im-
proper use of thei nvokeAndWai t () ori nvokelLat er () methodsis agreater source of con-
fusion among Swing users and can result in deadlock.'®

PtPlot, created by Edward A. Lee and Christopher Hylands, is an example Java™ program
that uses the Swing package [Davis et al., 1999, chapter 10].1* PtPlot consists of Java™ classes
(many of which are Swing classes) that plot data on a graphical display. The main thread in the
program is part of the Pl ot classr un() method. Thisthread (I'll refer to it as the PtPlot thread)
repeatedly callsthePl ot . addPoi nt () method. addPoi nt () synchronizesonthePl ot object
lock and then attemptsto draw pointson the display. Thislatter task (drawing pointson the display)
requires the PtPlot thread to communi cate with the Swing event dispatch thread. Separate from the
Plot thread are several buttonsfor modifying theview of the PtPlot display. One such buttonisthefill
button. If auser clicksonthefill buttontheBut t onLi st ener . acti onPer f or med() method
will be called and thisin turn callsthe Pl ot . fi | | Pl ot () method. ThePl ot . fill Pl ot ()
method is synchronized on the Pl ot object lock. Since thefill button is a swing component,

But t onLi st ener. acti onPer f ormed() andadl of its contentsare part of the event dispatch
thread.

Inorder for the PtPl ot thread to actually add pointsto thedisplay, it must communicatewith
theevent dispatchthread either throughthei nvokelLat er () method orthei nvokeAndWai t ()
method. Diposetsillustrate how the former method is deadlock free while the latter is deadlock
prone. Figure 2.18 showsthe two separate threads - the PtPlot thread and the event dispatch thread -
without communi cation between them. Two order constraintsmust be added to thisfigure. Thefirst
constrains the two invocations of the Pl ot lock to not occur concurrently. The second constraint
is due to the communication between the PtPlot thread and the event dispatch thread. This second
constraint isafunction of thedi spl ayPoi nt s event and the event labelled “conmruni cat i on
event.” Figure 2.19 shows both constraints added to the two threads. The upper section of Fig-

ure 2.19 consists of the asynchronous constraint that isimposed by i nvokeLat er () . Thelower

1%For aglimpseat the headachesfaced by usersof thetwo invokemethods, viewht t p: / / f orum j ava. sun. com
and searchoni nvokelat er .
"ptpiot isavailableat ht't p: / / pt ol eny. eecs. ber kel ey. edu/ j ava/ pt pl ot ..

Event Dispatch Thread

47

o
Plot
PtPlot Thread Lock Plot fill Plot
° Buttonfill @ [[
Plot communication
Lock event
Plot.addPoint @ [) [) @ displayPoints
Y o
[

Figure 2.18. The Separate Threads In PtPlot

section of Figure 2.19 uses the synchronous constraint of i nvokeAndWai t () . In thislatter case

acycleexists.

Event Dispatch Thread

PtPlot With invokelL ater() °
PtPlot Thread Plot)
Lock Plot.fillPlot
® Button.fill @ [[
Plot
Lock invokel ater
Plot.addPoint @ [) [] @ displayPoints

Event Dispatch Thread

PtPlot With invokeAndwait() — ®

Plot
Lock

PtPlot Thread

Buttonfill @

Plot.fillPlot

Plot.addPoint @ @ displayPoints

Figure 2.19. PtPlot and the Java™Swing Event Dispatch Thread

48

49

Chapter 3

| nterfacing Heter ogeneous Process

M odels

Can't we all get along?
- Rodney King, 19921

In Sections 1.1.3 and 2.2.4 several communication styles were introduced. In particular,
synchronous and asynchronous message passing communication was described and diposets were
used to represent both of these approaches. Synchronous and asynchronous message passing are
two very important classes of concurrent communication, but the range of semantics optionsfor de-
scribing communi cation and computationinaconcurrent system goeswel | beyond these approaches.
Any set of semantics serve to constrain and define the manner of communication and computation
of aconcurrent system. A set of such semantics describing how componentsin a concurrent system
can communicate and compute dataisreferred to as amodel of computation.

A model of computation (MoC) is a concept that traditionally has played a behind-the-
scenes role in the design of computational systems. Often the constraints imposed by a model of
computation fade into the background and only residein the designer’ ssubconscious. Neverthel ess,
all specification systems realize a particular model of computation. Von Neumann-style imperative
programming languages applied to sequential software systems utilize an automata-based model of

computation. Verilogand VHDL, two common hardware design languages, both use adiscrete event

1 This quote was made in responseto aracial insurrection in Los Angeles spawned by a 1992 Simi Valley, California
court verdict.

50

model of computation. Tools that implement digital signal processors often realize one of severa
possible dataflow MoCs [Girault et al., 1999; Buck, 1994; Bhattacharyya and Lee, 1994].

A model of computation determines how a component communicates data and computes
data. The method by which a component communicates datais realized by a communication inter-
face or simply interface. A communication interface facilitates data transfer between a component
and the other components to which it communicates. A component’s communication interface is
defined by the component’s model of computation. For example, a discrete event (DE) component
that keeps track of time must have a mechanism for specifying time stamps in its communication
interface. A synchronous dataflow (SDF) component need not incorporate time into its interface as
timeis not arelavant parameter.

Given aparticular model of computation, there are two approachesto executing a network
of components. One approach is schedule-based. In the schedule-based approach, ascheduleiscre-
ated that specifies an ordering of invocationsof each component contained in the network. In many
casesthe scheduleis sequential, although thisis not necessary. Aseach component isinvoked, com-
putation of data occurs. A schedule-based execution model presumes that each component’s com-
putation is finite. A second approach to execution of a network of components is process-based.
Process-based execution of a network of components does not assume that each component’s exe-
cutionisfinite. For the sake of fairnessintheface of possibly infinite computation, the process-based
method assigns an autonomous thread of control to each component. Due to the autonomy of each
component afforded by the assigned thread, componentsin a process-based execution are often re-
ferred to as processes.

For most models of computation, a network of components can be executed in either a
schedule-based or process-based manner. Certain models of computation are more amenable to one
style or the other. For example, the Synchronous Dataflow (SDF) model of computation [Lee and
Messerschmitt, 1987] is best executed according to a schedule-based execution model. Thisis be-
causeitisrelatively easy to determine efficient sequential schedulesfor SDF networks. On the other
hand, the distributed discrete event (DDE) model of computationis best executed in a process-based
manner sinceitsdistributed natureis especially amenabl e to separate threads of control [Righter and
Walrand, 1989].

Models of computation facilitate well defined specification of concurrent systems, but for

51

Controller
/ Process
Real Time
= \
User
Interface

Microcontroller

i i System Bus

@ FPGA Programmable
DSP

Figure 3.1. A Sample Embedded System

ASIC

most large, complex systemsasinglemodel of computation can not be used alone. Complex systems
typically consist of several subsectionswith different sectionsbest described by different MoCs. As
an example, consider an embedded system as displayed in Figure 3.1. This system, with charac-
teristics of cell phones and personal digital assistants, is not easily described by asingle MoC. The
analog RF front end is best described by a model of computation that uses differential equations.
The control -oriented aspects of the embedded system are best described by a discrete event model
of computation. The graphical user-interfaceis suitable for description by a process-oriented model
of computation that can easily describe the non-deterministicinterface. Thevoice coder DSP isbest
described by a dataflow model of computation such as synchronous datafl ow.

Heterogeneous application of models of computation is an approach that recognizes the
need for multiple MoCsto be used in conjunction with one another for describing complex systems.
Asdiscussedin Section 1.1.4, many researchersin the System Level EDA community proposeahet-
erogeneous approach for dealing with complex system design. Given the use of a heterogeneous ap-
proach, it becomesimplicit that components of different models of computation communicate with

one another. |.e., heterogeneity implies that components with different communication interfaces

52

must communicate. The gquestion becomes how? How should heterogeneous components commu-
nicate with one another. In genera, there are two approaches for handling the interaction of hetero-
geneous MaoCs. The amor phous approach to heterogeneity allows components of different MoCs
to communicate directly. 2 The structured approach to heterogeneity requires that components of
different MoCs communicate through an adapter.

The choice of amorphous versus structured heterogeneity has implications on both the
communication and computation of anetwork of components. From the perspective of communica-
tion, amorphous heterogeneity implies that a single component must incorporate features of multi-
ple MoCs and, hence, have multipleinterfaces. For example, asingle component might be required
to support both asynchronous message passing and synchronous message passing. A similar phe-
nomenon existsin the realm of computation. Suppose a given component communi cates with some
components that observe the synchrony hypothesis and others that do not. Should the component
in question observe synchrony or not? In effect amorphous heterogeneity burdens each component
with the possibility of having to deal with every available model of computation - a burden that ren-
ders the model of computation concept useless.

Structured heterogeneity enforces the application of asingle model of computation to any
single component in a network by using adapters to connect incompatible interfaces. An adapter
converts the interface of one component into the interface of another. Adapters (also called wrap-
pers) play the role of interface translators. A treatment of adapters as object-oriented patterns can
be found in Gamma et al. [1995]. Adapters are advantageous for severa reasons. First, adapters
can serve as boundariesfor separating computation in addition to separating communication. Using
adaptersto separate computation can be hel pful in managing shared processor resources. Second, an
adapter simplifiesthejob of the designer. A designer with a given expertise (e.g., familiarity with a
particular set of communication semantics) can focus on the semanticsthat he or sheisfamiliar with.
The disadvantage of structured heterogeneity is that semantics must be determined for the adapters
themselves.

A special class of structured heterogeneity ishierarchical heterogeneity. Whilestructured
heterogeneity requires that components communicate across MoC boundaries through an adapter,

hierarchical heterogeneity adds the has-a relationship to components within a network. To under-

2The term amorphous heterogeneity is due to Edward A. Lee.

53

stand hierarchica heterogeneity, consider two components, A and B, that communicate directly to
each other without the use of an adapter (i.e., by structured heterogeneity we recognize that they
must have compatible communication interfaces and execute according to the same model of com-
putation). If there existsathird component, C, that both A and B communicate directly to, then hi-
erarchical heterogeneity requiresthat neither A nor B use an adapter to communicate to C or both A
and B use an adapter such that the respective adapters serve as boundariesto the same pair of MoCs.

Hierarchical heterogeneity has many advantages. From a syntactic point of view hierar-
chical heterogeneity allows a network of components to be abstracted into a single component. A
single abstracted component can contain another network of components with that network execut-
ing according to adifferent model of computation. Such abstraction allows adesigner to view asys-
tem at the level of detail desired. Semanticaly hierarchical heterogeneity can be used to organize
heterogeneity in atelescoped fashion that facilitates successive refinement. Milner [1989] suggests
that computation can be successively refined into layers of communication® (thisisalso dealt within
Rowson and Sangiovanni-Vincentelli [1997]). Using hierarchical heterogeneity we can continually
peer deeper into a component to reveal new networks of communication. Componentsin a hierar-
chical system that contain other components are referred to as composite components. Components
in ahierarchical system that do not contain other components are called atomic components.

Hierarchical heterogeneity hasavery practical basisthat isbecomingincreasingly relevant
from an industria standpoint. Based on industry trendsit is rare for a single company to design a
complete system including all subcomponents. Instead, certain firms specialize in subsystems and
sell thedesigns- theintellectual property or I P - to other firmsthat manufacture the compl ete system
[Dapasso et al., 1999]. Components based on different IP will often have incompatible interfaces
[Rowson and Sangiovanni-Vincentelli, 1997; Passeroneet al., 1998]. Furthermore, based on timeto
market constraints and the desire to seek the lowest possible costs, it is common to swap similar IP
throughout the design process. The black box perspective that hierarchical heterogeneity affordsis
very amenabl e to the “ part swapping” of IP.

Defining the semanti cs of adapters between hierarchical, heterogeneous componentsisthe
central question of this chapter. | will consider a solution to this problem in the context of process-

based models of computation. Attacking the adapter between processes of different MoCs is ar-

? See the beginning of Chapter 1 in Milner [1989] for this discussion.

PN

PN

PN

54

Amor phous Heter ogeneity
CSP
PN
D
CSP
? ¢ ?
Structured Heter ogeneity
Adapter CSP Adapter
B
PN
D
CSP
C
Adapter Adapter
Hierarchical Heter ogeneity
> \PN » PN
A . E D
CSP
[B 3
L C =1

Figure 3.2. Types of Heterogeneity

55

guably more challenging than the equivaent problem for schedule-based components. The diffi-
culty is analogousto the difference between sequential versus concurrent systems; both systems are
challenging but as outlined in Chapter 1, concurrent systems are more difficult.

Theremainder of thischapter proceedsasfollows. In Section 3.1 1 consider criteriaagainst
which to measure how effective a given adapter solutionis. In Section 3.2 | review the semantics
of three process-oriented models of computation that serve as case studies. In Sections3.3 and 3.4 |
propose a solution to the problem of interfacing heterogeneous process-oriented models of compu-

tation.

3.1 Assessing The Effectivenessof an Adapter

The goal of an adapter isto translate the communication semantics between theinterfaces
of heterogeneous components and to disaggregate execution. In order to clarify thisgoal | consider
desired characteristicsof interfaces below. These characteristicswill serve asagaugefor comparing

various adapter aternatives.

Simplicity

We would like adapters to be simple. An overly complex solution would equate an adapter with a
component whose sole purposeis to transl ate communication semantics. The primary problemwith
making an adapter a component is that this adds an additional execution burden to the original net-
work of components. Instead of simply executing a set of connected components, there must aso
be execution of the adapter components between them. Another problem with assigning the task of
an adapter to a component isthat this solution sitson a dlippery slope above amorphous heterogene-
ity. A better option isto design adapters with sufficient simplicity so that they do not perform any

computation of data.

Generality

Closely related to the desire for a simple adapter is the desire for an adapter that can be generally
appliedto abroad set of MoC pairs. Thedesirefor generality isan attempt to avoid the N2 problem.

56

Recall that an adapter always occurs between a pair of models of computation. 4 We certainly do
not want to have to define aunique adapter between every possible pairing of MoC interfaces; given
N models of computation, such an approach would require N 2 adapters. Instead, we would like to
design a single adapter that operates properly between any pair of MoCs. Such generality will be

advantageous from a software engineering perspective.

Avoidance of Deadlock

We do not want an adapter to introduce the possibility of deadlock. To make thisissue clear, | in-
troduce the concept of homosemantic abstraction. Homosemantic abstraction is the redlization of
hierarchy without heterogeneity. It occurs when two components executing according to the same
model of computation communicatewith one another through an adapter. Homosemantic abstraction
facilitates separation of execution even though the components all have compatible communication
interfaces. Clearly, a network of componentsthat incorporate homosemantic abstraction should be
semantically identical to the same network of components in which homosemantic adapters have
been removed. | apply this same reasoning to deadlock. If homosemantic adapters areintroduced to
anetwork of components, the network of components should be no more deadl ock-prone than prior

to the addition of the adapters.

Deter minacy

Many maodels of computation guarantee deterministic execution of a network of components. The
determinacy is generally aresult of the MoC's denotational semantics; given that the components
themselves do not randomly compute data, then execution of the components will result in a de-
terministic outcome even if the components are invoked according to a non-deter ministic schedule.
Examples of models of computation with guarantees of determinacy in the manner cited above in-
clude all dataflow models (e.g., Process Networks, Dynamic Dataflow, Boolean Dataflow and Syn-
chronousDataflow [Leeand Parks, 1995]) aswell asdiscreteevent models[Yates, 1993; Lee, 1999b].
I will apply homosemantic abstractionin amanner identical to my previoususewith deadlock: given

anetwork of determinate components, the network of components should mai ntain determinacy even

*Note the tacit constraint that adapters occur between exactly two components. While it is possible to have three (or
more) way connections, it is rare and hence | am not considering those cases.

57

with the addition of homosemantic adapters.

3.2 ProcessModels

As stated, | am considering the issue of heterogeneous semantics with emphasis placed
on the interaction between process models of computation. As a case study, | will consider three
particular process models of computation and for completeness | summarize these three model s of

computation bel ow.

3.2.1 Distributed Discrete Event (DDE)

The distributed discrete event (DDE) model of computation uses asynchronous message
passing in which the messages passed are time-stamped events. Each component maintains alocal
notion of time and components communicate their local notion of time by producing and passing
time stamped events. When a component receives an event it advances its local notion of time to
that of the received event. By virtue of acomponent’slocal clock, all events consumed or produced
by a particular component are totally ordered. Events associated with distinct components are par-
tially ordered. Herein lies the distinction between distributed discrete event systems and traditional
discrete event systems. |In traditional DE systems the set of all system events are totally ordered,
not just those associated with a single component. Hence, componentsin atraditional discrete event
system must be invoked sequentially while distributed discrete event modeling leverages the natu-
ra concurrency existing in a network based on the networks's topology. Distributed discrete event
modeling and discrete event modeling have been studied extensively in Chandy and Misra[1981];
Righter and Walrand [1989]; Maorgan [1985]; Lamport [1978]; Jefferson [1985].

3.2.2 Process Networks (PN)

GillesKahn [Kahn, 1974; Kahn and MacQueen, 1977] developed Process Networks (PN)
asaway to take advantage of Dana Scott’ swork in denotational semanticsand apply it to concurrent
systems. Componentsin a process networks model communi cate viaasynchronous message passing
without a notion of time. Communication occurs through blocking reads of FIFO queues. If the

gueues have bounded memory, then writing to a queue when it is full becomes a blocking write.

58

Figure 3.3. Non-deterministic Choice

Each component effectively maps an input stream to an output stream. The set of al streamsin the
network of components form a complete partial order based on prefix ordering. Based on this CPO
of streams, the denotational semantics of process networks guarantees determinacy. By determinacy
it ismeant that neither relative computation speed nor ordering of invocation of the componentsin

a PN network will impact the outcome of data streams.

3.2.3 Communicating Sequential Processes (CSP)

Communicating Sequentia Processes (CSP) isamodeling system devel oped by Tony Hoare

[Hoare, 1985]. Processes in CSP communicate via Synchronous message passing without a notion
of time. In addition to synchronous message passing, processes in CSP may use non-deterministic
choice. Non-deterministic choice alows asingle component to consider several possible communi-
cation options and then randomly select a single option among the set of choices that are enabled.
Consider Figure 3.3 to understand the meaning of non-deterministic choice. In the block diagram,
component C can non-deterministically chooseinput from either the upper or lower channel. C must
then wait for communication on either of the channels to be enabled which occurs when either com-
ponent A or B isready to communicateto C. Component C compl etes communication with thefirst
channel that is enabled. If both channels are enabled simultaneously, than component C randomly
chooses one of the channel sto communi cate with. Non-deterministic choice may seem odd, butitis
afacility that has parallelsin several different modeling languages. Theinherent randomnessof non-
deterministic choiceisuseful in allowing adesigner to partially specify asystem. Closely related to
CSPis Communicating Concurrent Systems (CCS) developed by Robin Milner [Milner, 1989]. The
semantics of CSP and CCS are virtualy identical.

59

3.3 Order & Atomic Processes

It isworth comparing and contrasting the three process models of computation presented

thusfar, and to do so | refer to arelevant quote:

A concurrent system is anetwork of communicating sequential processes.
Robin Milner, 1989

| refer to this quote to draw attention to the word sequential. The context of Milner’s quote was di-
rected at hiscommuni cating concurrent systems (CCS) modeling language, but many other modeling
languages assume that the basic computational element is sequential. Certainly al of the modeling
frameworks mentioned in this dissertation assume a sequential primitive, including communicating
sequential processes, process networks, the Actor’s model and many others. Modeling languages
that incorporate the synchrony assumption in conjunction with a state transition al'so implicitly as-
sume a sequential primitive. For example, in the Reactive Modules modeling language [Alur and
Henzinger, 1996], the existence of an atomic round during which all components simultaneously
change state permits one to extensionally view the state change as occurring sequentially.
Sequentia execution implies atotal ordering on all operations of a component. In other
words, acomponent’s operations can be represented by athread. From an external point of view, the
operations of concern are a component’s communication operations. In a message passing system,
communication can be either the writing of data messages to a channel (production) or the reading
of datamessages (consumption) from a channel. Sequential execution of amessage passing compo-
nent means that all consumptions and productions of a component are totally ordered. A model of

computation’s semantics determine exactly how such total ordering is redized.

3.3.1 Ordering Communication: Event Driven vs. Data Driven

An important classification of how a model of computation impacts the ordering of a component’s
communication actions is whether the components are event driven or data driven. Event driven
models of computation are common in graphical user interfaces (GUI), reactive embedded systems
and control systems. Data driven models of computation are often used to model the dataflow found
in computer architectures as well as data intensive parallel processing schemes such as image pro-

cessing.

60

@ >
®o
[A=

©@®
~ 0
w @

Figure 3.4. Time-Stamped Events Awaiting Consumption by a DDE Component

In event driven models, the ordering of a component’s communication actions are deter-
mined by the external environment. Event driven models of computation, inwhich DDE isaspecial
case, have externally determined consumptions. Given a DDE component with multipleinput chan-
nels, it isnot possibleto determine a priori in what order consumptions of data messageswill occur.
A DDE component with two input channels, 1 and 2, can not specify that consumption will occur
first on channel 1 followed by consumption on channel 2. Instead, the order of consumptions for
event driven componentsis imposed by the environment.

The ordering of incoming time stamped events determines the order a DDE component
consumes such data. Consider Figure 3.4 showing a DDE component with pending events (indi-
cated by dots) destined for both input channels. Each number adjacent to an event indicates that
event’s time stamp. The time stamps shown indicate that the component must consume the mes-
sages as specified by the time stamp ordering. A DDE component can specify the relative ordering
of event productions. Often such productionis specified in response to a consumption. |.e., given a
consumption on a particular input channel, produce an event on a particular output channel.

In data driven models of computation, a component autonomously makes the decision of
whether it will consume or produce a message on any of itsinput channels. The absence of a mes-
sage may force a component to wait, as in the case of an attempt to consume a message from an
empty channel, but the relative ordering will be completely determined by the component. Hence,
a component that decides to consume a message first from channel 1 followed by channel 2, may
have to wait (perhaps indefinitely) on channel 1 but the decision to consume from channel 1 before
consuming from channel 2 will be upheld independent of data availability.

PN isan example of adata driven mode of computation and hence, the ordering of con-

sumptionand productionactionsareinternally imposed. CSP componentswithout the notion of non-

61

deterministic choice are also examples of consumption/production ordering due to internal criteria.
The non-deterministic choice facility alowsa CSP component to specify a set of aternative order-
ing constraints and then defer to a sel ection within the set based on externa criteria. In effect, non-
deterministic choice allows a component to be event driven with respect to both consumption and

production.

3.3.2 Reordering Communication

Models of computation in which components internally determine the ordering of communication
actions can befurther classified based on how the communi cation actions can bereordered. In Chap-
ter 2we considered theimpact of ordering on such undesirable propertiesas deadlock. For internally
motivated models of computationwe would liketo characterize the sensitivity to reordering of com-
munication actions. Reordering is defined as the act of switching the order of operations within a
singlethread. Reordering impacts only the order relation and does not impact the containment rela-
tion. For example, if two operationsare mutually non-inclusive, they will remain so after reordering.

For agiven model of computation, reordering may or may not impact acomponent’sinter-
action with other components. When a reordering does not impact the safety or liveness of a set of
components, | say that themodel of computationis reorder invariant with respect to aset of actions;
otherwisetheMoC isreorder variant with respect to aset of actions. Whether or not reordering will
impact liveness or safety will have a profound impact on both the flexibility of component execu-
tion as well as how the hierarchical composition of components should be organized. To evaluate
the impact of reordering on communication actions for a given model of computation, let us recall
the fundamental ordering constraints of communication within both PN and CSP.

Figure 3.5 shows the fundamental ordering constraint realized in process networks with
unbounded channels. The consumption of a data message through a channel and from a production
simply requiresthat the consumption (action ¢) occur after the production (action #). Thisconstraint,
characteristic of asynchronousmessage passing schemes, is shown inthefigure with two threadsthat
communicate via a single consumption/production pair. Process networks with bounded channels
require an additional ordering constraint. A network with channelsthat can store NV unread messages
requires that at least one consumption of data must occur for every N + 1 productions. Figure 3.6

illustratesthis constraint with achannel that can store two unconsumed datamesssages. Actionsa, b

62

a@ @®c
b f
c g
d h

Figure 3.5. The Basic Unbounded Asynchronous Message Passing Order Constraint

o @ d
| \l .
¢ ><
Figure 3.6. The Basic Bounded Asynchronous Message Passing Order Constraint

and ¢ are productionsby theleft thread and actions e isacorresponding consumption. The constraint
that action ¢ must occur after action e indicates that the production associated with action ¢ can not
occur until after action e enables sufficient capacity in the channel.

Thesynchronousmessage passing feature of CSP placesamuch tighter ordering constraint
on a set of communicating threads than does asynchronous message passing. Even in the case of
bounded asynchronous message passing with a channel capacity for one data message, the ordering
constraint impacts only three actions in a communication between two threads. Given two threads
that communicate via synchronous message passing, an ordering constraint will be imposed on a
total of six actions. Thisisillustrated in Figure 3.7 in which action b and e are synchronous. Note
in particular that the synchronous ordering constraint impacts the predecessor and successor of both

b and e. The choice operator of CSP is not illustrated, but recall that it implements synchronous

63

>.
j=s]

Figure 3.7. The Basic Synchronous Message Passing Order Constraint

message passsing with the allowance for multiple alternatives to be considered.

Unbounded process networks are reorder invariant with respect to a set of consumptions.
As an example, consider Figure 3.8. Any two consumption actions of a thread can be rearranged
without introducing a cycle in the set of communicating threads. The same can be said for the re-
ordering of aset of productionswithin unbounded process networks. The sketch of the proof for the
previoustwo declarationsisvirtually identical . First consider the case of two adjacent consumptions
(productions) with no intervening actions. Clearly these can rearranged regardless of whether the
consumptions (productions) communicate to the same or different threads. Subsequent application
of reordering of adjacent consumptions (productions) facilitates the reordering of a set of consump-
tions (productions).

In genera athread within a process network is not reorder invariant with respect to a set
of consumptionsand productions. As an example, consider Figure 3.9. Bounded process networks
have sufficient ordering constraintsthat componentsare reorder variant for any set of communication
actions. The ordering constraintsof synchronous message passing renders CSP components reorder
variant. Recall that a synchronous message between two communication actions a and b imposes
constraints on each other’s respective successors and predecessors of a and b. Hence, if athread
reorders a synchronouscommunication action, thiswill lead to new successorsand predecessorsthat

can cause cyclic deadlock.

®
L

(@]
.—>g—>.—> [J

64

>

J

}

|
Reordered actions /

a@

Figure 3.8. Reorder Invariance of Unbounded PN Consumptions

o
1

Reordered actions

Figure 3.9. Reorder Variance of PN Consumptions with Productions

65

1>,
>
>,

A
A
A
A
|

: 4’.—>.—>.—>.—>5
\ 4

Figure 3.10. Reorder Variance of CSP Components
3.4 Order & Composite Processes

The question of creating an adapter between different models of computation in a hierar-
chical, heterogeneous network is really a question of determining how a composite component in
such anetwork should execute. Externally a composite component executes according to the model
of computation shared by itsexterna neighbors. Internally acomposite component containsa set of
components that operate according to a model of computation that is generaly different from that
outside of the composite component. Between the external and internal worlds is an adapter that
translates between the two models of computation. If we apply Milner’s quote cited in the begin-
ning of Section 3.3, we should execute the adapter of a composite component sequentially. Unfortu-
nately, sequential execution of composite componentsisgenerally not possibleif the MoCsinvolved
are process models of computation.

The primary problemwith sequential execution of the adapter of acompositecomponentis
that sequential execution introduces deadlock. As an example, consider Figure 3.11 in which com-
ponents A, B, C' and D are atomic with A and B contained by composite actor £ and C' and D
contained by composite actor F'. Assumethat A and B perform no actions (produce nor consume
any data messages) but C' produces an infinite stream of messages that are consumed by D. If we
execute composite actor F' by performing ablocking read on the top input channel, then F will stall

indefinitely. By imposing an order on F”sexecution we have no way of knowingapriori if our order

66

Adapter

/
\ read()

E > =

..../

\

Figure 3.11. Sequential Execution of an Adapter

of execution will result in thiskind of stalling. The more general problem with a sequentia adapter
in a process composite component is that a sequential adapter imposes a total ordering on a set of
processes that are partialy ordered. In general, this can cause cycles.

Since sequential adapters are deadlock-prone, consider a concurrent adapter instead. A
concurrent adapter associates athread with each channel flowing through the adapter. Each adapter
thread waits on data and then passes the data through the channel. An adapter thread talks to com-
ponents on either side of the adapter according to the prevailing model of computation. Consider a
synchronous message passing component, component A, that produces messages that are transfered
through an adapter to an asynchronous message passing component, component B. The adapter
thread associated with the channel will wait on a synchronous put from A and then do an asyn-

chronousput into B.

34.1 Concurrent Adapters

Concurrent adapters are useful for severa reasons. First concurrent adapters essentially
make the adapter an identity function from the prespective of data transfer. Thus, it is trivia to
show that they maintain determinacy in the face of homosemantics abstraction. Second, concur-
rent adapters can be generally applied to a variety of MoC pairs; the association of athread to each
channel does not change as afunction of the MoC. Third, concurrent adapters are conceptually sim-
ple. All channels are treated identically. Unfortunately, difficulty still lies ahead. The challengein
concurrent adapters is not solved simply by associating a separate thread to each channel. The dif-

ficulty isin determining how the threads communicate with their respective channelsand when that

67

communication occurs. In Sections 3.4.2 and 3.4.3 | consider the significance of the communication
semantics of the threads in a concurrent adapter with respect to the process models of computation

| have previously introduced.

3.4.2 Non-Deterministic Choice: Blessing & Curse

Non-deterministic choi ce has been mentioned as a communication stylethat ispart of CSP
and is common in many other models of computation. The blessing of non-deterministic choiceis
that it allows a component to choose between a set of communication alternatives. If any of the
choicesintheset arevalid than communicationwill be completed. In effect, non-deterministicchoice
allowsacomponent to “increaseitsodds’ for avoiding a deadlocked situation. Paradoxically, inthe
context of acomposite component’s adapter, non-deterministic choice can introduce deadl ock con-
ditions.

A very simpleillustration can show the problemswith non-deterministicchoice. Consider
an atomic component, A, with two output channels that communi cate through an adapter to asingle
two input atomic component, B, as shown in Figure 3.12. Assume homosemantic abstraction with
both theinside and outsideMoCs being CSP. If A attempts non-deterministic choice throughitstwo
output channels, what will happen? Since the goal of non-deterministic choice is to randomly se-
lect an enabled communication channel, thenif A views both the upper and lower channels as being
valid simply by virtue of their respective adapter threads, then either channel can be selected. Let us
suppose further that B is performing a blocking read on the upper channel. Clearly, if A randomly
selectsthelower channel then execution for the entire systemwill stall. Such adeadlock isinconsis-
tent with the corresponding topology involving only the two atomic components and no composite
components; homosemantic abstraction has introduced deadlock.

To avoid the above scenario with non-deterministic choice, we must define a channel as
being enabled not simply based on the existence of an adapter thread. | propose that a channel be
defined as enabled only after the possibility of a completed execution has been guaranteed. In other
words, an adapter thread should transfer data in an atomic fashion. Applying an atomic transfer
mechanism to the above scenario would work asfollows. A would check for validity of each output
channel. The corresponding adapter threads would not accept amessage from A until they had veri-
fied that communication on theinside of the adapter would complete. Only the upper adapter thread

68

Adapter

SN

read()

NN
Y

Figure 3.12. The Introduction of Deadlock Via Non-Deterministic Choice

would be validated sincethisthread could check for the blocking read on the upper channel. Hence,
the non-deterministic choice semantic of A would choose the upper channel.

Theneed for an atomic transfer mechanismisfundamentally rel ated to reorder invariance.
A’sselection of avalid output channel is equivalent to reordering the consumptions of component
B. Sincecomponent B isexecuting according to the CSP model of computation and thereforeisnot
reorder invariant, a non-atomic adapter transfer mechanism leads to deadlock. The same result can
occur with bounded process networks. A non-atomic adapter transfer mechanism is not a problem
if non-deterministic choiceinteracts with a set of unbounded PN components, since unbounded PN

consists of componentsthat are reorder invariant.

343 Totally Ordered Event Driven Models

Intheprevious section wedetermined that non-atomically transferring dataacross an adapter
couldlead to deadl ock if non-deterministic choiceinteractswith componentsthat are reorder variant.
Unfortunately an atomic transfer mechanism can cause problemsif areorder variant model interacts
with event driven modelsinwhich eventsaretotally ordered. Consider an event driven componentin
which events (from mouse or keyboard activities perhaps) are totally ordered. If the totally ordered
events are being transferred across an adapter to interact with a set of reorder variant components,
then an atomic transfer mechanism can deadlock. A slight variation of Figure 3.12 canillustratethis
as shown in Figure 3.13. If an atomic transfer mechanism exists in the topology shown in Figure
3.13, deadlock will result.

Althoughthereisaparadoxical twist to the difference between the scenariosin Figure 3.12

and Figure 3.13, asimple explanationis available. In the former case, non-deterministic choice re-

69

DDE CSspP
9 8 4
o o o read()
A B
e o o -
6 5 1

Figure 3.13. Totally Ordered Event Driven Models with Reorder Variant Components

sultsin an event driven effect that isnot totally ordered. In fact, because of the atomic transfer mech-
anism, the ordering of communication actionsin Figure 3.12 isdriven by component B. In Figure
3.13 the time stampsimpose atotal ordering. Thistota ordering is due solely to component A and
has nothing to do with component B. Theremedy isto alow asynchronous message passing across
adapters between totally ordered event driven components and reorder variant components. E.g., a

non-atomic adapter transfer mechanism.

70

Chapter 4

| mplementation

It is better to practiceit than to know how to defineit.
- Thomas a Kempis*

Thischapter serves asa practical illustration of the preceding sections of this dissertation.
It includes a discussion of my solution to the problem of interfacing heterogeneous models of com-
putation that was discussedin Chapter 3. | also show the practical implicationsof reorder invariance
and describe my architecture for facilitating heterogeneity and hierarchy of process-oriented mod-
els of computation. In addition to these contributions, this chapter describesin detail alarge scale
system level design environment that served as the framework within which the implementations
discussed in this chapter occurred. The large scale system level design environment that | am re-
ferring to is called the Ptolemy Project. Under the leadership of principal investigator Edward A.
Lee, The Ptolemy Project is a software development project that studiesthe modeling and design of
computational systems.

Thischapter proceedsasfollows. In Sections4.1 and 4.2, | providean overview of thegen-
era Ptolemy Project excluding process-oriented models of computation. In Section 4.3, | describe
the architecture | created as a solution to heterogeneous, hierarchical interaction of process-oriented
models of computation. In Section 4.4, | describe the impact of reorder invariance on domain poly-

morphism within Ptolemy.

! Frangois Fénelon, Christian Perfection (New York: Harper & Brothers, 1947), p. 194.

71

4.1 Modeling & Design

The Ptolemy Project 2 studiesthe modeling and design of complex computational systems.
Example computational systems considered in the Ptolemy Project include pagers, cell phones, se-
curity systems and computational subsystemsfound in automobiles (e.g., air bag systems). Ptolemy
Il isthe latest software environment to be rel eased by the Ptolemy Project. Ptolemy Il facilitatesthe
modeling and design of thekindsof systemslisted above. By modelingwemean the act of represent-
ing asystem or subsystem formally. By design we mean the act of defining a system or subsystem.
Modelsand designsare complementary. In some cases asystem model might serve asaconstraint to
which adesign must adhere. In other cases a system design might be validated by aresulting model.

An executable model is one that defines a computational procedure that mimics a set of
properties of a system. Executable models might also be called algorithmic or computable models.
A simulation is a special class of executable models. A simulation is an executable model that is
distinct from the system it models. In some cases an executable model may start as asimulation and
then evolveinto a software implementation of the system. Thisis often the casein many electronic
systems and resultsin a blurred distinction between a model and the system it represents.

Executable model s operate according to amodel of computation that specifiestheinterac-
tion between components within the executable model. The set of interaction rules associated with
agiven model of computation are the semantics of the model of computation (MoC). In Ptolemy |1,
amodel of computation isrealized as a domain. All executable models that execute in a particular
domain obey acommon model of computation. Central to the beliefs of the Ptolemy Project isthe
maxim of heterogeneoussemantics. The premise of thisbelief isthat no singlemodel of computation
can effectively model al aspects of al systems. Instead complex systems are most effectively mod-
elled by multiple models of computation with a given MoC being employed to design a particular
subsystem as appropriate.

2The Ptolemy Project is a dynamic research initiative that is constantly being expanded and improved. For the most
up-to-date Ptolemy Project description, see the following World Wide Web page: http://ptolemy.eecs.berkeley.edu.

72

4.2 ThePtolemy Il Architecture

Ptolemy 11 is a second generation system implemented in the Java™ programming lan-
guage. The predecessor of Ptolemy I, Ptolemy Classic, wasimplemented in C++ inthe early 1990's
[Buck et al., 1994]. Throughits use of Java, Ptolemy Il offers an infrastructure that iswell suited to
modeling heterogeneous semantics. Two key featuresof Ptolemy |1 that leverage Javaare concurrent
execution through the Java threading infrastructure and modul arization through Java packages.

Thethreading support offered in Java can be very difficult to program correctly. The sup-
portissolow level that userswho are not expertsin concurrent programming can create software that
is unpredictable and deadlock prone. Ptolemy |1 usesthe threading infrastructure of Javato support
models of computation that consist of autonomous components (components that control their own
execution). In these process domains, each component is assigned its own thread of control. The
process domains provide a “ safety layer” on top of the threading infrastructure. This layer simpli-
fies the use of Javathreads by alowing a non-expert to correctly implement a concurrent program.
Proper design of the process domains was made significantly easier through the aid of diposets.

The Java package structure alows for easy organization of Ptolemy |l into subsystems.
Thisisin contrast to many e ectronic design automation (EDA) toolsthat have large, monolithic de-
signsthat impose an “al or nothing” feel. In Ptolemy |1, as long as package dependencies are not
violated, programmers may useonly the packagesthat are relevant to their needs. The package orga
nization of Ptolemy Il covers awide set of semantics and execution features with over ten top-level
packages (each of which may consist of severa subpackages). The package structure of Ptolemy 11

is particularly useful in separating domains.

4.2.1 ThePtolemy Il Packages

Figure 4.1 shows the key packages of Ptolemy 1. Note that the figure consists of a Uni-
fied Modeling Language (UML) static structure diagram. UML isawidely used graphical modeling
language for describing large, object-oriented software systems. The Unified Modeling Language
fusesthe best practices of the Booch and Object Modeling Technique (OMT) methodol ogies. There
are several types of UML diagrams, each with specia uses. In the case of the UML static struc-

ture diagram, syntactic relationships between classes are shown. Figure 4.1 shows how each of the

packages
| remel |
ComponentEntity m
ComponentPort
ComponentRelation | agribute
CompositeEntity CrossRefList
Entity DebugListener
Port - Debuggable
Relation lllegalActionException

InternalErrorException
InvalidStateException
KernelException

math

ArrayStringFormat Complex
ComplexArrayMath DoubleArrayMath
graph DoubleArrayStat DoubleMatrixMath

ExtendedMath FixPoint
CPO FloatArrayMath FloatMatrixMath
DirectedAcyclicGraph Fraction IntegerArrayMath
DirectedGraph IntegerMatrixMath Interpolation
Graph § LongArrayMath LongMatrixMath
Inequality MatrixMath Precision
InequalitySolver Quantizer SampleGenerator
InequalityTerm SignalProcessing

NameDuplicationException data ”’"""""’"""‘
Nameable
NamedList ArrayToken
NamedObj BooleanMatrixToken data.expr
o => NoSuchltemException BooleanToken ASCIl CharStream
| PtolemyThread ComplexMatrixToken | AgTpiBitwiseNode
! RecorderListener ComplexToken ASTPtFunctionNode
Kemel.event StreamListener DoubleMatrixToken | AsTptFunctionalliNode
: Workspace DoubleTaken ASTPtLeafNode
ChangeFailedException FixMatrixToken ASTPtLogicalNode
ChangeList FixToken ASTPtMatrixConstructNode
ChangeListener IntMatrixToken ASTPtMethodCallNode
ChangeRequest IntToken ASTPtProductNode
StreamChangeListener LongMatrixToken ASTPtRelationalNode
LongToken ASTPtRootNode
i A § MatrixLowerBound | ASTPtSumNode
””””” 1 : MatrixToken ASTPtUnaryNode
actor R) ! MatrixUpperBound | gixpointFunctions
! H 1 Numerical JJITPtParserState
Actor ! plot ObjectToken Node
AtomicActor actor.util ScalarToken Parameter
CompositeActor actor.lib CmdLineArgException StringToken ParseException
Configurable CQComparator EPSGraphics Token PtParser
Director AbsoluteValue | CalendarQueue EditListener PtParserConstants
Executable AddSubtract DoubleCQComparator EditablePlot PtParserTokenManager
ExecutionListener Average FIFOQueue Histogram PtParserTreeConstants
10Port Bernoulli TimedEvent HistogramApplet SetParameter
|ORelation Clock A Plot SimpleNode
Mailbox Commutator actor.gui * PlotApplet Token
Manager Const . PlotApplication TokenMgrError
NoRoomException CurrentTime lcomp05|teActorApp p|otsgg UtilityFunctions
NoTokenException Distributor S?zsg;, PlotDataException ValueListener
QueueReceiver Expression > PlotFrame Variable
Receiver FileWriter Egletgg:r;fFactory PlotLive
StreamExecutionListener| Gaussian ExecEventListener PlotLiveApplet
TypeConflictException | Maximum HistogramPlotter PlotPoint
TypeEvent Minimum M';rig\/iew Pxgraph [gui
TypeListener MultiplyDivide MoMLApplet T '
TypedActor Poisson ppiet | | BasicJApplet
TypedAtomicActor Pulse MOZALIApphCaIIOn § L--o------—--—-=>| ComponentDialog
TypedCompositeActor | Quantizer mg dzlgr;rge [! Query
TypedIOPort Ramp Placeable ! ' I QuerylListener
TypedIORelation RandomSource | ; | | StatusBar
Recorder Plotter o N
Scale PtolemyAppret) 3 3 media
SequenceActor PtolemyApplication 3 3 -
S — SequenceSourc PtolemyQuery | | AUd!O .
Sine SequencePlotter | | AudioViewer
Sink SketchedSource § § Picture
actor.process Source TimedPlotter -
N XYPlotter domains
TimedActor
S?;:thawDetector TimedSource
BranchController ;r/:?;g?;gz::k csp ‘ o ‘ dde ‘ de
NotifyThread Writer
ProcessDirector a8 actor.sched
ProcessReceiver -
ProcessThread NotSchedulableException
TerminateProcessException Schgduler . . fsm ‘ pn ‘ sdf ‘
CompositeProcessDirector StaticSchedulingDirector
T

Figure 4.1. The Ptolemy Il Package Structure

73

74

(e l
P1 P2 P4 P5

P3

Opaque Ports - P1, P3, P5

Transparent Ports - P2, P4

Atomic Entities - E1, E3, E4
Composite Entities - E2

Key:

Figure 4.2. A Sample Ptolemy Il Graph

Ptolemy Il packages are related. Subpackages are shown by block diagram containment; e.g., the
kernel package has two subpackages: kernel.util and kernel.event. Arrows represent dependency
relationships. As an example, notethat the graph package depends on the kernel .util package.

The kernel, actor and domains packages are of special relevance to this discussion. The
kernel package, asitsnameimplies, isat the core of Ptolemy 1. The primary contribution of the ker-
nel packageisan abstract syntax. The abstract syntax of the Ptolemy Il kernel allows oneto specify
hierarchical graphs. A hierarchical graphisoneinwhich vertices of the graph may themselves con-
tain graphs. The vertices of the hierarchical graphsin Ptolemy |l are called entities while the arcs
are called relations. Relations are connected to entities via ports. Note that there is no concept of a
port in traditional graph theory [West, 1996; Chen, 1997]. Entities play therole of components (the
term used in previous sectionsof thisdissertation) and rel ations serve as the communication channel s
through which components communicate to one another.

Hierarchy is supported through containment. A composite entity may contain composite
entitieswhile component entitiesare a specia class of composite entity that can not contain entities.
We say that a component entity is atomic while a composite entity is not. A composite entity is
opaque if its contents (the entities and ports that it contains) are visible outside of the composite
entity. An opague composite entity has opaque ports as opposed to transparent ports for entities
that are not opague. An example of aPtolemy |1 hierarchical graph can befoundin Figure4.2. Note
how composite entity E2 contains atomic entity E3 as well as ports P2 and P4. Note further that all

75

three atomic entities- E1, E3, and E4 - are opague (indicated by the black shaded squares) whilethe
compositeentity E2 happensto betransparent with transparent ports (indicated by thewhite squares).

Thehierarchical graphsthat can be specified by the Ptolemy |1 kernel are strictly syntactic
and can not be executed. The actor package adds semantics to the graphs and provides an infras-
tructure for execution. Specific semantics of execution are achieved in the domain packages. Each
of the domain packages use the infrastructure of the actor package to implement a specific model of
computation. Currently all domains except one realize a message passing form of execution. The
one exception isthe FSM (Finite State Maching) domain that implements an automata-based style
of computation. In thisdocument we are only concerned with the message passing domainsand will
not describe the architecture of the FSM domain.

The actor package introduces severa key classes and interfaces rel evant to message pass-
ing. These classes and interfaces facilitate executabl e entities that communicate data. We call these
executable entities actors, a term inspired by Gul Agha's Actors model [Agha, 1986]. Informally
our notion of actor is anodein ahierarchical graph that can process data. Formally an actor is an
entity that implements the Actor interface, can contain |OPorts and has a Director and a Manager.
|OPortsare extensionsof ports through which data can flow. In Ptolemy Il aunit of dataisreferred
to asatoken. |OPorts are directiona and can be either inputs, outputs or both.

An actor in Ptolemy |1 isexecutable by virtue of thefact that it implements the Executable

interface. Asshown in Figure 4.3, the Executable interface consists of five action methods:

initialize()

prefire()

fire()

postfire()

wr apup()

Aniterationisdefined to beoneinvocationof pr ef i r e() , any number of invocationsof fi re(),
followed by oneinvocation of post fi re() . Anexecution is defined to be one invocation of

initialize(),anynumber of iterations, followed by oneinvocation of w apup() . A Director

76

/ initialize() / prefire()
exectution @rati on @ r f()
\ wrapup() \ postfire()

Figure 4.3. Execution and Iteration in a Sample Ptolemy |l Model

control sthe execution of aset of actorsand determines an actor’ smodel of computation. A Manager
controls the execution of a complete model.

A director specifies an actor’s model of computation by allocating an implementation of
the Receiver interface to each of the actor’sinput IOPorts. A receiver is contained within an actor’s
I OPort and specifies how communication through the IOPort occurs. A receiver may support either
asynchronous or synchronous message passing. In the case of asynchronous message passing, re-
ceivers are used to store tokens. A receiver may assume a notion of time associated with al tokens
or it may assume no ordering constraints on tokensthat it stores. For synchronous message passing,
receivers have implicit states for indicating intermediate stages within arendezvous. Each distinct
implementation of the Receiver interface implies a distinct communication style for the actors that
contain the receiver reglizations.

Through all ocation of receivers, adirector control sboth the communi cation and execution
of an actor. This means that an actor’s model of computation can change depending on the director
that controlsit. Thisisquite distinct from making an actor’smodel of computation an inherent qual-
ity. Werefer to thischaracteristic as domain polymor phism[Lee and Xiong, 2000]. Through domain
polymorphism, code reuse is facilitated: an actor with particular functionality can be implemented
once and then used in multiple domains. Furthermore, the functionality of an actor can be changed
at runtime with the substitution of a different director.

A very ssmple example of domain polymorphismisillustrated in Figure 4.4 consisting of
two amost identical systems. Both the system on the right and | eft have a ramp source actor con-
nected to a data plotter actor. The ramp source outputs a stream of increasing integer data val ues;
eg., 0, 1,2 3, ... The data plotter simply reads the incoming data and plotsit to a screen. The

ramp source and data plotter on the left and right are implemented identically. The differenceisin

77

Composite Actor PN Composite Actor CSP
Director Director

Figure 4.4. Domain Polymorphism: Identical actors in the left and right systems have dif-
ferent communication semantics because of their directors.

the respective directors. The system on the left has a Process Networks (PN) director. This means
that input port P2 on theleft containsareceiver that receives dataasynchronously. Thesystemonthe
right has a Communicating Sequential Processes (CSP) director implying that input port P2 on the
right receives data synchronously. The result is that the two actors on the right execute at the same
speed whileit is possiblethat in the system on thel eft, the ramp sourcewill execute much faster than

the data plotter.

4.2.2 Hierarchical Heterogeneity

Ptolemy Il supports hierarchical heterogeneity by allowing different directorsto exist in-
side and outside of opague composite actors. Figure 4.5 shows an example of hierarchical hetero-
geneity. Opague composite actor E2 contains a synchronous dataflow (SDF) director implying that
E3 executes with SDF semantics. External to E2 a process networks (PN) director is used imply-
ing that E1 and E4 execute according to PN semantics. Externally E2 acts likea PN actor whilethe
internals of E2 execute according to SDF semantics.

A boundary port is an opague |OPort contained on the boundary of a composite actor. In
Figure 4.5, ports P2 and P4 are boundary ports. A receiver that is contained in, receives data di-
rectly from or transmits data directly to a boundary port is aboundary receiver. If aboundary port
isan input port (i.e., datais transfered from outside of the containing composite actor to theinside
through the port) then the boundary port contains boundary receivers external to the composite actor.
If aboundary port is an output port (i.e., datais transfered from inside of the containing composite

actor to the outside through the port) then the boundary port contains boundary receiversinternal to

78

E2

P1 P2 P4 PS5

P3 SDF
Director PN
Director

E5

Figure 4.5. Hierarchical Heterogeneity in a Sample Ptolemy Il Model

the composite actor. Figure 4.6 displays a boundary receiver contained in an input boundary port
as well as aboundary receiver that receives datafrom the boundary port. Note that pairs of bound-
ary receivers are associated with boundary ports (as is the case for the two boundary receivers in
Figure 4.6 associated with the boundary port P2). Datatransfer is directional for a pair of bound-
ary receivers, i.e., dataflows through one of the boundary receiversfirst (the producer receiver) and
then flows through the second one (the consumer receiver). In Figure 4.6, the receiver contained in

IOPort P2 is the producer receiver; the receiver contained in |OPort P3 is the consumer receiver.

4.2.3 The Process Package

Thept ol eny. act or. process package (or process package) incorporates extensive
use of Java"threads to facilitate execution in the process-oriented domains: PN, CSP and DDE.3
In the schedul e-oriented domains of Ptolemy I1, each actor’s executable methods are invoked by the
controlling director. In the process-oriented domains each actor is assigned a unique thread by the
controlling director. The director starts the thread and the thread invokes its assigned actor’s exe-
cutable methods. Once the director has handed control of the actors to their threads, the director
then monitors the execution of the actors. The actors may continue executing until each actor vol-
untarily compl etes execution or until the set of actors deadlock. Determination of whether deadlock
has been reached is made by the director who monitors the actors while they are being invoked by
their threads.

Monitoring for deadlock is a significant difference between the process-oriented domains

and the schedule-oriented domains. All receivers have hasRoon{) and hasToken() methods

®The design of the process package excluding heterogeneousinteraction was initiated by Mudit Goel and Neil Smyth.

— From External Actor (E1)

A Token

of Data

Boundary
Receivers

=

Direction of
Data Flow

F——

Outside Opaque
Composite Actor (E2)

Inside Opaque
Composite Actor (E2)

- @

/

- 1

Input 10Port P2 Input |OPort P3

Atomic Actor (E3)

Figure 4.6. Boundary Ports and Boundary Receivers in an Opaque Composite Actor

79

80

for determining if an actor is able to transmit data or receive data through the receiver, respectively.
ThehasRoom() andhasToken() methodsreturn truewhen communicationthroughthereceiver
isenabled and false if communication is not enabled. The definition of enabled communication de-
pends on the model of computation. Informally, deadlock occurs when all actorsin a network block
while attempting to communicate through receivers in which communication is not enabled. All
receivers in the schedul e-oriented domains implement the Receiver interface. The ProcessReceiver
interface extendsthe Receiver interface and isimplemented by each of the process-oriented domains.
The ProcessReceiver interface is designed so that when blocking occurs, the total number of blocked
actors can be monitored.

In schedule-oriented domains an actor will not attempt to transmit datathrough areceiver
if hasRoon() = fal se for that receiver. Likewise a schedule-oriented actor will not attempt
to receive data from a receiver if hasToken() = fal se. Process-oriented actors ignore the
hasRoom() andhasToken() methodsof the processreceivers. If communicationisnot enabled
aprocess receiver will force the calling actor to block and wait until communication is enabled. A
blocked communication attempt in which an actor waitsto receive datais called a blocking read. A
blocked communication attempt in which an actor waits to transmit datais called a blocking write.
A set of Ptolemy |1 process-oriented actors are deadlocked if all of them are blocked waiting to com-
muni cate.

Once deadl ock has been reached in aset of process-oriented actors, thedirector hasthe op-
tion of resolving the deadl ock so that execution can continue. Whether adeadlock can beresolvedis
domain-specific. In Communicating Sequential Process (CSP) models, for example, deadlock can
not beresolved. Inthe case of Bounded Queue Process Network (Bounded PN) models, itispossible
to resolve deadlock in which at least one of the actorsis blocked waiting to put datain afull queue.
Thomas Parks developed an algorithm for such deadlock resolution that can be applied at runtime
[Lee and Parks, 1995]. In any process-oriented model, if deadlock is resolved then the actors con-
tinue execution until deadlock is reached again or until the actors voluntarily end execution. Using
deadlock as the mechanism for stopping and starting actor execution leads to a unique definition of
iterationinthe case of process-oriented domains:. in process-oriented domainsaniterationlastsuntil

deadlock is reached.

81

4.3 Hierarchical Heterogeneity and the Process Package

| extended the Ptolemy |1 process package to allow interaction between heterogeneous
process-oriented domains. In accomplishing my task, | had the very important goal of maximizing
codereuse. Asoutlinedin Chapter 1, code reuse simplifies the software devel opment process by al-
lowing thework of individualsaswell as groupsof engineersto more easily sharework. Codereuse
allowsengineersto leverage the past and prepare for the future. In leveraging the past, | recognized
that my implementation was asmall part of alarge software project (Ptolemy 11). Therefore, | intro-
duced a system that did not require significant changes to the previous infrastructure. In preparing
for the future, | designed a system that anticipated expansions by providing a suitably general set of
classesthat would remain useful as futureresearchers expanded Ptolemy Il inyearsto come. Figures
4.7 and 4.8 consist of static structure UML diagrams of the process package classes and interfaces.
Figure 4.7 focuses on the classes and interfaces that are used to monitor deadlock. Figure 4.8 con-
sistsof classes and interfaces associated with ProcessReceiver and the mechanism for detecting if a
receiver isat a CompositeActor boundary.

My system architectureisfounded on asimpledichotomy: external vs. internal deadlock.
A network of actorsis deadlocked if the actors have the same opague composite actor container and
they are each blocked waiting to write to or read from receivers contained in their network. A net-
work of actorsis externally deadlocked if the network of actors is deadlocked and at least one of
the receivers involved is a boundary receiver. A network of actorsis internally deadlocked if the
network of actors are deadl ocked and none of the receiversinvolved are boundary receivers.

Given the external/internal deadlock dichotomy my system works as follows. If the con-
tents of an opaque composite actor are internally deadl ocked, then theinternal director has sole con-
trol. The director may attempt to resolve the deadlock or simply end execution of the deadlocked
actors. If the contents of an opague composite actor are externally deadlocked, then control of the
situationis given to the director outside of the composite actor. In some cases, the external director
will resolve execution and in other cases execution of the deadlocked actors will simply end. The
result of this approach is that the special abilities of each model of computation are used when ap-

propriate. | provide more detail on how my solutionis implemented in the following section.

ProcessDirector

-_notDone : boolean

+ProcessDirector()

+ProcessDirector(workspace : Workspace)
+ProcessDirector(container : CompositeActor, name : String)
#_actorBlocked(rcvr : ProcessReceiver) : void
#_actorBlocked(rcvrs : LinkedList) : void
#_actorUnBlocked(rcvr : ProcessReceiver) : void

#_actorUnBlocked(rcvrs : LinkedList) : void
#_addNewThread(thr : ProcessThread) : void Runnable
#_areActorsDeadlocked() : boolean

#_decreaseActivecount() : void

#_getActiveActorsCount() : long

#_getBlockedActorsCount() : int

#_getProcessThread(actor : Actor, dir : ProcessDirector) : ProcessThread
#_increaseActiveCount() : void

resolveDeadlock() : voolean

CompositeProcessDirector Contains
BranchController
I-_inputBranchController : BranchController 1
-_outputBranchController : BranchController -_branchesBlocked : int
+CompositeProcessDirector() +BranchController(container : CompositeActor)
+CompositeProcessDirector(workspace : Workspace) +activateBranches() : void
+CompositeProcessDirector(container : CompositeProcessDirector, name : String)| +addBranches(port : IOPort) : void
+createBranchController(ports : Iterator) : void 0..2 |+deactivateBranches() : void
+getinputController() : BranchController ——+getBranchList() : LinkedList
+getOutputController() : BranchController +getParent() : CompositeActor
+stopInputBranchController() : void +hasBranches() : boolean
+stopOutputBranchController() : void +isActive() : boolean
#_areActorsExternallyBlocked() : boolean +isBlocked() : boolean
#_controllerBlocked(cntlr : BranchController) : void +run() : void
#_controllerUnBlocked(cntlr : BranchController) : void +setActive(active : boolean) : void
#_isInputControllerBlocked() : boolean i#_branchBlocked(rcvr : ProcessReceiver) : void
[#_isOutputControllerBlocked() : boolean #_branchUnBlocked(rcvr : ProcessReceiver) : void|
_resolvelnternalDeadlock() : boolean
1 | Monitors
| |
I Runnable |
| |
| |
| |
———— -
ProcessReceiver |
2 1T !
| 0.n
+isConnectedToBoundary() : boolean !
+isConnectedToBoundarylInside() : boolean Branch
+isConnectedToBoundaryOutside() : boolean
+isConsumerReceiver() : boolean
+isInsideBoundary() : boolean
+isOutsideBoundary() : boolean +Branch(cntlr : BranchController)
+isProducerReceiver() : boolean 1 [*Branch(prodRcvr : ProcessReceiver, consRcvr : ProcessReceiver, cntir : BranchController)
+isReadBlocked() : boolean +getConsReceiver() : ProcessReceiver
+isWriteBlocked() : boolean +getProdReceiver() : ProcessReceiver
+requestFinish() : void +isActive() : boolean
+reset() : void +registerRcvrBlocked(rcvr : ProcessReceiver) : void
+registerRcvrUnBlocked(rcvr : ProcessReceiver) : void
+run() : void
+setActive(value : boolean) : void
+transferToken() : void

Figure 4.7. The Ptolemy Il Process Package: Directors

ProcessReceiver

+isConnectedToBoundary() : boolean
+isConnectedToBoundarylInside() : boolean
+isConnectedToBoundaryOutside() : boolean
+isConsumerReceiver() : boolean
+isInsideBoundary() : boolean
+isOutsideBoundary() : boolean
+isProducerReceiver() : boolean
+isReadBlocked() : boolean
+isWriteBlocked() : boolean
+requestFinish() : void

+reset() : void

N

Branch

+Branch(cntlr : BranchController)
Monitors .
+getConsReceiver() : ProcessReceiver
+getProdReceiver() : ProcessReceiver
+isActive() : boolean

-

+run() : void
+setActive(value : boolean) : void
+transferToken() : void

+Branch(prodRcvr : ProcessReceiver, consRevr : ProcessReceiver, cntlr : BranchController),

+registerRevrBlocked(revr : ProcessReceiver) : void
+registerRcvrUnBlocked(rcvr : ProcessReceiver) : void

Monitors

[CompositeProcessDirector

CSPReceiver DDEReceiver PNQueueReceiver
1 1 1
1 1 1
BoundaryDetector

-_rcvr : Receiver

+BoundaryDetector(rcvr : Receiver)
+isConnectedToBoundary() : boolean
+isConnectedToBoundaryInside() : boolean
+isConnectedToBoundaryOutside() : boolean|
+isInsideBoundary() : boolean
+isOutsideBoundary() : boolean

+reset() : void

Figure 4.8. The Ptolemy Il Process Package: Receivers

83

84

4.3.1 Controlling ProcessReceivers at CompositeActor Boundaries

The ProcessReceiver interface was initially written by Mudit Goel and Neil Smyth. It
was designed to beimplemented by the CSPReceiver, DDEReceiver and PNQueueReceiver classes.
Each of thesethreereceiver classesimplementsthehas Token() , hasRoon(), get () andput ()
methods to facilitate blocking reads and blocking writes. Prior to my extension of the ProcessRe-
ceiver class, it was assumed that any object callingtheget () or put () methods of a ProcessRe-
ceiver object was an actor; the exception to this rule occurs in the case of CSPReceiver objects, in
which pt ol eny. domai ns. csp. kernel . Condi ti onal Branch objects cal the receivers
to support non-deterministic choice.

My extension of the ProcessReceiver class to facilitate heterogeneous interaction of pro-
cess domains does not assume that the put () and get () methods of boundary ProcessReceivers
areinvoked by actors. In my extension, theput () method of boundary receivers containedin input
boundary portsiscalled by an actor but theget () method iscalled by aspecia proxy. Theget ()
method of boundary receivers contained in input boundary portsis called by an actor but the put ()
method is called by a specia proxy. In both cases the proxy is realized by the
pt ol eny. act or. process. Branch class.

Thept ol eny. act or. process. Branch classimplements the Java™ Runnablein-
terface. Thus, each instantiationof Branch resultsin aseparate thread of control. Each Branch object
is assigned to two boundary receivers. Branch threads are controlled by BranchController objects.
Once a Branch thread is started by a BranchController, it attempts to repeatedly pass data between
itspair of assigned receivers in the appropriate direction. As an example, consider Figure 4.6. In
this case, a Branch object is assigned both boundary receivers shown. The Branch object repeatedly
attemptsto get datafrom the boundary receiver in the boundary port and put the datainto thereceiver
of theinternal actor.

As with all ProcessReceivers, boundary receivers can incur blocking reads or writes. In
such cases the Branches control ling the bl ocked receivers must register the block with their Branch-
Controller abjects. This procedure works as follows. Each opague composite actor consists of two
BranchControllers; the input BranchController and the output BranchController. The input Branch-

Controller controls N Branch objectsthat are assigned to a total of N boundary receiver pairs as-

85

sociated with the composite actor’ sinput boundary ports. The output BranchController controls M
Branch objects assighed to M boundary receiver pairs associated with the composite actor’s output
boundary ports. Each BranchController (input or output) is blocked when the boundary receivers
of each of its Branchesis blocked; the Br anchCont rol | er. i sBl ocked() method isused to
determine such status.

The director inside of an opaque composite actor of a process-oriented model of compu-
tation monitors three states: the state of the input BranchController, the state of the output Branch-
Controller and the state of the contained actors. The primary state monitored by the director is that
of the contained actors. Here the concern iswhether the contained actors are deadl ocked. Given that
the contained actors are deadl ocked, the secondary concern of the director iswhether input or output
BranchControllers are blocked. The action of the director given these states depends upon whether
the director’s opague composite actor is contained by a composite actor that is process-oriented or
schedule-oriented. Tables4.1 and 4.2 summarize the actions taken.

Note in both tables (4.1 and 4.2) that the label postfire() = fal se indicatesthat
the contained actors will no longer be permitted to execute. A label of postfire() = true
indicates that execution may continuefor an additional iteration. In several cases thetablesindicate
that the director will wait until the input or output branch controllers are blocked. In al such cases,
blocked input or output branch controllers are imminent. For example, if the contained actors are
blocked and the input branch controller isblocked (see the left column of Table 4.1), then the output
brancheswill eventually have no datato transfer out of the composite actor and they will necessarily
block.

4.3.2 Allocating Receiversat CompositeActor Boundaries

Aswith al receivers, ProcessReceivers are allocated to |OPorts by directors. Allocation
occurs during an opague composite actor'si ni ti al i ze() method prior to any iterations. De-
termining the placement of boundary receivers vs. normal receiversis a question of topology. One
approach for allocating boundary receivers is to let the director determine which receivers should
be boundary receivers and which should be normal receivers. The problem with this approach is
twofold. First it requires two receiver objects (a boundary and normal receiver) for each model of

computation. Maintaining consistency among two separate receiver objects is very difficult. The

86

second problem is that such an approach does not easily support mutable topologies. It is desirable
tonot haveto replace or re-instantiatereceiversif thetopol ogy changes (e.g., if areceiver isnolonger
connected to a boundary port).

I chose not to distinguish boundary and normal receivers. Any receiver can act as either
a boundary receiver or a normal receiver; there is no separate class for the two types. To achieve
this, each receiver contains a pt ol eny. act or. pr ocess. Boundar yDet ect or object. An
instantiated BoundaryDetector is contained in areceiver and providesthe receiver with servicesfor
determining if it is a BoundaryReceiver. A BoundaryDetector provides such services via a rather
expensive topological sort. Fortunately the result is cached and remains valid until a changein the
topol ogy occurs. Branch objects are assigned to receiver pairs as appropriate and the receivers con-
tain the appropriate methods to be invoked by the Branch objects.

Prior to my extension, the Pr ocessRecei ver. get () method contained no argument
and returned atoken of data (pt ol eny. dat a. Token). Likewise, theput () method contained
pt ol eny. dat a. Token asthe soleargument withavoi d return value. To accomodate the pos-

sibility of being part of aboundary, al ProcessReceivers must implement the foll owing methods.
e get (Branch)
e put (Token, Branch)?

When a Branch calls either theget () or put () methods of areceiver, then it passesitself asthe
Branch argument. When an actor callstheget () or put () methods of a receiver the Branch ar-
gument is set to nul | . My approach has very few receiver methods that are required solely for
boundary receivers. Two of these methods are (get () and put ()). The other methods leverage
BoundaryDetector whichisasingleclassthat can be used by every model of computation. Theresult

isavery high level of code reuse.

4.4 Domain Polymorphism and Reorder Invariance

Domain polymorphism allows a component’smodel of computation to be changed during

execution. Theusefulnessof domain polymorphismisthat the semanticsof anetwork of components

* Token = ptolemy.data. Token and Branch = ptolemy.actor.process.Branch

87

I nput/Output Branches

Contained || Input Blocked, Input UnBlocked, I nput/Output
Actors Output UnBlocked Output Blocked UnBlocked
Internally | e Wait until Output Blkd ¢ Deactivate Branches ¢ Wait until Output Blkd
Blocked ¢ Deactivate Branches e postfire() = false ¢ Deactivate Branches
o postfire() = false o postfire() = false
Externally || e Wait until Output Blkd e Wait until Input Blkd ¢ Do Nothing
Blocked o Register block w/container | e Register block w/container
UnBlocked || e« Do Nothing ¢ Do Nothing ¢ Do Nothing

Table 4.1. Actor and Branch States when a Process is Contained by a Process

I nput/Output Branches

Contained || Input Blocked, Input UnBlocked, I nput/Output
Actors Output UnBlocked Output Blocked UnBlocked
Internally | e Wait until Output Blkd | e Deactivate Branches | ¢ Wait until Output Blkd
Blocked ¢ Deactivate Branches o postfire() = false ¢ Deactivate Branches
o postfire() = false o postfire() = false
Externally || e postfire() = true ¢ Wait until Input Blkd | e Do Nothing
Blocked o postfire() = true
UnBlocked || e Do Nothing ¢ Do Nothing ¢ Do Nothing

Table 4.2. Actor and Branch States when a Process is Contained by a Non-Process

can be modified in apredictable manner while maximizing code reuse. Domain polymorphismfrees

a component to make only a minimal assumption about the model of computation in which it will

operate. A component can assume a particular function but not be constrained to assume a particular

style of communication for the function’sinput and output data, since the communication style may

vary with the model of computation.

The Ptolemy Il Actor Library package (pt ol eny/ act or/ | i b) consistsof alarge set

of domain polymorphic actors. These actors do not assume a specific model of computation and are

intended for use with a variety of the models of computation that come with Ptolemy 1. Example

domain polymorphic actors are listed bel ow.

e ptol eny/actor/actor/lib/Average

Outputsthe average of M input values.

e ptol eny/actor/actor/lib/d ock

Produces a periodic signal.

88

e ptol eny/actor/actor/lib/Gussian

Generates random numbers according to a Gaussian distribution.

e ptol eny/actor/actor/lib/Sine
Produces an output that is equal to the sin() of theinput.

In Ptolemy 11, all domain polymorphic actors attempt to consume input data through an input port
polling mechanism. This means that as a domain polymorphic actor iterates, it checks each input
channel in around robin fashion and consumes datawhen available. The round robin order is based
on topology. Asan actor’schannelsare linked (connected) together, the order in which the actor will
poll input channelsis determined. If the linking order of an actor’sinput channels are changed, then
the order of input channel polling will change as well.

Given the round robin polling mechanism of Ptolemy I, care must be taken when attempt-
ing to execute a domain polymorphic actor in certain models of computation. If amodel of compu-
tation is not reorder invariant, then the use of domain polymorphic actors can lead to deadlock. The
possibility for deadlock is quite subtle but very deadly. Consider Figure 4.9 in which both actor A
and B are domain polymorphic. If actor A’stop portislinked before A’sbottom port while B’s bot-
tom portislinked before B’stop port, theninaround robin polling scheme actor B would attempt to
consume data from its bottom port first, while actor A would attempt to produce data on itstop port
first. In anon-reorder invariant domain such as CSP, thiswould lead to deadlock.® Fortunately the
solutionissimple. Aslong asthe channelsfor actors A and B arelinked in the same order, deadlock

due to the round robin polling will be avoided.

>Thistypeof probleminitially wasnoticed with the Ptolemy 11 Butterfly Demo. Typically executedin the Synchronous
Dataflow (SDF) domain, a user attempted to execute the Butterfly Demo in the Communicating Sequential Processes
(CSP) domain. An inconsistency in the order of linked channels served as one of the first clues to the issue of reorder
invariance.

CSP
Director

Figure 4.9. Deadlock Potential with Domain Polymorphic Actors

89

90

Chapter 5

Conclusion

What good is a new born baby?
- Benjamin Franklin, 18" Century?!

In this dissertation, | consider the difficulty of modeling and designing complex, concur-
rent systems. By concurrent | mean a system consisting of a network of communicating compo-
nents. By complex | mean a system consisting of components with different models of computa-
tion such that the communication between different components has different semantics according
to the respectiveinteracting model s of computation. In Chapter 1, | showed how the componentsin
a complex, concurrent computational system are related to one another. | recognized that two par-
ticularly important rel ationshipsfound in complex, concurrent systemsare the order relation and the
containment relation. The order relation represents the relative timing of component actions within
a concurrent system. The containment relation facilitates human understanding of a system by ab-
stracting a system’s componentsinto layers of visibility. The consequence of improper management
of the order and containment rel ationshipsin a complex, concurrent systemisdeadlock. Deadlockis
an undesirable halting of a system’sexecution and isthe most challenging type of concurrent system
error to debug. In Chapter 2, | showed that no methodol ogy is currently availablethat can concisaly,
accurately and graphically model both theorder and contai nment rel ationsfound in complex, concur-
rent systems. Theresult of theabsence of amethod suitablefor modeling both order and contai nment

isthat the prevention of deadlock isvery difficult. Tofill thisvoid | created the diposet.

! Benjamin Franklin's question was made in responseto the question “What good is a hot air balloon?’

5.1

91

Primary Contributions

¢ | created thediposet for representing order and containment in complex, concurrent sys-

5.2

tems. The diposet is a formal, mathematical structure that represents order and containment
relationsin asingle entity. Chapter 2 consisted of severa theorems and proofs demonstrating

the ability to rigorously manipulate diposets.

| showed that the diposet robustly represents complex, concurrent computational sys-
tems. | provided several examples that show that the diposet is well suited for graphically
modeling significant systems. My examplesillustrated that diposets can represent awide va

riety of communication semanticsincluding asynchronous and synchronous message passing.

| described how diposets can serve as the core of an automated compile-time deadlock
detection mechanism. | defined deadlock in Definition 2.10 and using this definition, | de-
scribed a conservative approach for automatically determining the possibility of deadlock in
software systems modeled by diposets.

Secondary Contributions

| introduced the concept of reorder invariance. Reorder invarianceis a characteristic of a
model of computation that determines the possible order in which communications can occur
for componentsin a concurrent system. Reorder invariance impacts how amodel of compu-

tation supports domain polymorphism.

| implemented a software system to model and design complex, concurrent systems. My
implementation was part of the Ptolemy Project led by principal investigator Edward A. Lee
at UC Berkeley. The software system used threads in the Java™ programming language to
support concurrency. Complex designswere facilitated through arun-time deadl ock detection

mechanism that incorporated hierarchical, heterogeneity.

92

5.3 FutureWork

¢ Diposetsand Static Methods
While | explored the use of diposets for modeling a very broad set of software constructs, |
did not consider static methods. Considering the best approach for modeling static methods
with diposets would extend the applicability of diposetsand further justify their usefulness.

¢ Diposetsand Shared Memory
| applied diposets only to message passing systems. The set of message passing systemsis
large enough to single handedly justify diposets. Nevertheless, shared memory systems are
widely used (The Yale Linda Group?, Javaspaces™, etc.) and merit consideration for being
model ed by diposets.

¢ Implementation of an Automatic Compile-Time Deadlock Detection Tool
A study of thefeasibility of an automatic deadlock detection systemisneeded. It iscertain that
such atool will be computationally complex. An implementation will clarify the practicality

of such atool.

5.4 Final Remarks

I have benefited tremendously from the work involved in this dissertation. | look forward
to the opportunity to extend the concepts contained herein and to collaborate with other researchers

on improving and expanding these ideas for the betterment of society.

2 See http:/imww.cs.yale.edu/Linda/linda.html

93
Bibliography

Agha G. A. (1986). ACTORS A Model of Concurrent Computation in Distributed Systems. The
MIT Press Seriesin Artificial Intelligence. MIT Press, Cambridge.

Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A Pattern Language: Towns, Buildings,

Construction. Oxford University Press.

Allen, R. and Garlan, D. (1997). A formal basisfor architectural connection. ACM Transactionson
Software Engineering and Methodol ogy.

Alur, R. andHenzinger, T. A. (1994). Real-time system = discretesystem + clock variables. In T. Rus
and C. Rattray, editors, Theories and Experiences for Real-time System Development, AMAST
Series in Computing 2, pages 1-29. World Scientific.

Alur, R.and Henzinger, T. A. (1996). Reactivemodul es. | n Proceedingsof the 11th | EEE Symposium
on Logic in Computer Science, pages 207-218.

Andrews, G. R. (1991). Concurrent Programming: Principlesand Practice. Benjamin/Cummings,

Redwood City, Cadifornia

Backus, J. (1978). Can programming be liberated from the von neumann style? a functional style

and its algebra of programs. Communicationsof the ACM, 21(8), 613-641.

Basten, T., Kunz, T., Black, J. P, Coffin, M. H., and Taylor, D. J. (1997). Vector time and causality
among abstract events in distributed computations. Distributed Computing, 11(1), 21-39.

Benveniste, A. (1998). Compositional and uniform modeling of hybrid systems. |EEE Transactions
on Automatic Control, 43(4), 579-584.

Bhattacharyya, S. and Lee, E. (1994). L ooped schedul esfor dataflow descriptionsof multiratesignal

processing algorithms. |EEE Transactionson Signal Processing, 42(5).

Boehm, B. W. (1976). Software engineering. |EEE Transactionson Computers, C-25(12), 1226—
1241.

94

Booch, G. (1994). Object-Oriented Analysisand Design. The Benjamin/Cummings Pulishing Com-
pany, Redwood City, CA, 2nd edition.

Booch, G., Rumbaugh, J., and Jacobson, |. (1999). The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA.

Breal, M. (1991). The Beginningsof Semantics. Essays, Lectures and Reviews. Stanford University
Press, Stanford, California

Brookes, S. D. (1999). Communicating parallel processes. In Symposiumin Cel ebration of the Work
of C.A.R. Hoare.

Brookes, S. D. and Dancanet, D. (1995). Sequential agorithms, deterministic parallelism, and inten-
siona expressiveness. In 22nd ACM SIGPLAN-SGACT Symposium on Principles of Program-
ming Languages, San Francisco, CA. ACM Press.

Brooks Jr., F. P. (1975). The Mythical Man-Month. Addison-Wesley, Reading, MA.

Brooks Jr., F. P. (1987). No silver bullet: Essence and accidents of software engineering. Computer,

20(4), 10-19.

Brown, R. (1988). Calendar queues: A fast o(1) priority queue implementation for the simulation
event set problem. Communications of the ACM, 31(10), 1220 — 1227.

Buck, J. (1994). Static scheduling and code generation from dynamic dataflow graphs with integer-
valued control streams. In Proceedings of the 28th Annual Asilomar Conference on Sgnals, Sys-

tems, and Computers, Pacific Grove, CA.

Buck, J., Ha, S, Lee, E. A., and Messerschmitt, D. G. (1994). Ptolemy: A framework for simulating
and prototyping heterogeneous systems. International Journal of Computer Smulation, 4, 155—

182.

Chandy, K. M. and Misra, J. (1981). Asynchronousdistributed simulation viaa sequence of paralle
computations. Communications of the ACM, 24(11), 198-206.

95

Chang, K.-T. and Krishnakumar, A. S. (1993). Automatic functiona test generation using the ex-
tended finite state machine model. In Proceedings of the 30th Design Automation Conference,

pages 86-91. The Association for Computing Machinery, Inc.

Chase, C. M. and Garg, V. K. (1998). Detection of global predicates: Techniques and their limita-
tions. Distributed Computing, 11, 191-201.

Chen, W. (1997). Graph Theory And Its Engineering Applications. World Scientific, Singapore.

Chu, P-Y. M. and Liu, M. T. (1989). Globa state graph reduction techniques for protocol valida
tion in the eflsm model. In Eighth Annual International Phoenix Conference on Computers and

Communications, pages 371-377.

Conway, M. E. (1963). Design of a separable transition-diagram compiler. Communicationsof the
ACM, 6(7).

Dalpasso, M., Bogliolo, A., and Benini, L. (1999). Virtual simulation of distriputed ip-based de-
signs. In Proceedings of the 36th Design Automation Conference, pages 50-55. The Association

for Computing Machinery, Inc.

Danidl, R. (1998). Embedding Ethernet connectivity. Embedded Systems Programming, 11(4), 34
—40.

Davey, B. A. and Priestley, H. A. (1990). Introductionto Latticesand Order. Cambridge University

Press.

Davis, J. S., Gdlicia, R., Godl, M., Hylands, C., Lee, E. A., Liu, J.,, Liu, X., Muliadi, L., Neuendorffer,
S., Reekie, J., Smyth, N., Tsay, J., and Xiong, Y. (1999). Ptolemy II: Heterogeneous concurrent
modeling and design in java. Memorandum No. UCB/ERL M99/40, University of California,
Berkeley, Department of EECS, University of Cdifornia, Berkeley, CA, 94720.

Davis, R. E. (1989). Truth, Deduction, and Computation: Logic and Semantics for Computer Sci-

ence. Computer Science Press.

Davisll, J. S, God, M., Hylands, C., Kienhuis, B., Lee, E. A., Liu, J., Liu, X., Muliadi, L., Neuen-
dorffer, S., Reekie, J., Smyth, N., Tsay, J., and Xiong, Y. (1999). Overview of the ptolemy project.

96
Memorandum No. UCB/ERL M99/37, University of California, Berkeley, Department of EECS,
University of California, Berkeley, CA, 94720.

de Bakker, J. and de Vink, E. (1996). Control Flow Semantics, chapter True Concurrency, pages
473-490. Foundations of Computing. MIT Press, Cambridge, Massachusetts.

Dijkstra, E. (1965). Solution of a problem in concurrent programming control. Communications of
the ACM, 8(9), 569.

Dijkstra, E. (1968a). The structure of the “the” multiprogramming system. Communicationsof the
ACM, 11(5), 341-346.

Dijkstra, E. W. (1968b). Programming Languages, chapter Co-operating Sequential Processes,
pages 43-112. NATO Advanced Study Institute. Academic Press, London.

Fidge, C. J. (1991). Logical timein distributed systems. Computer, 24(8), 28-33.

Foster, I. and Kesselman, C., editors (1999). The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, Inc., San Francisco, Cdifornia, 1st edition.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, New York.
Gibbs, W. W. (1994). Software’s chronic crisis. Scientific American, 271(3), 86-95.

Girault,A., Lee, B., and Leg, E. (1999). Hierarchical finite state machineswith multipleconcurrency
models. |EEE Transactions on Computer-Aided Design of Integrated Circuits, 18(6).

Godefroid, P. (1996). Partial-Order Methods for the \erification of Concurrent Systems: An Ap-
proach to the State Space Expl osion Problem, volume 1032 of Lecture Notesin Computer Science.

Springer-Verlag, Berlin.

Gordon, M. J. C. (1979). The Denotational Description of Programming Languages. Springer-
Verlag.

97

Gunter, C. A. (1992). Semantics of Programming Languages. Structuresand Techniques. Founda-
tions of Computing Series. The MIT Press.

Habwachs, N. (1993). Synchronous Programming of Reactive Systems. Kluwer Academic Publish-

ers, Dordrecht.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall International, New
Jersey.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Massachusetts.

Hudak, P. (1989). Conception, evolution, and application of functional programming languages.
ACM Computing Surveys, 21(3), 359-411.

Jefferson, D. R. (1985). Virtual time. ACM Transactions on Programming Languages and Systems,
7(3), 404-425.

Jones, C. B. (1999). Compositionality, interference and concurrency. In Symposiumin Celebration
of the Work of C.A.R. Hoare.

Kahn, G. (1974). The semantics of a simple language for parallel programming. In Proceedings
of the IFIP Congress 74, pages 471475, Paris, France. Internationa Federation for Information
Processing, North-Holland Publishing Company.

Kahn, G. and MacQueen, D. B. (1977). Coroutines and networks of parallel processes. In Proceed-
ings of the IFIP Congress 77, pages 993-998, Paris, France. International Federation for Informa-
tion Processing, North-Holland Publishing Company.

Kienhuis, A. (1999). Design Space Exploration of Stream-based Dataflow Architectures: Methods
and Tools. Delft University of Technology, Amsterdam, The Neterlands.

Kundu, J. and Cuny, J. E. (1995). Theintegration of event- and state-based debuggingin ariadne. In

International Converence on Parallel Processing, volumel, pages 130-134. CRC Press.

Lamport, L. (1978). Time, clocks, and the ordering of eventsin a distributed system. Communica-
tions of the ACM, 21(7), 558-565.

98

Lea, D. (1997). Concurrent Programmingin Java. Addison-Wesley, Reading, MA.

Lee, E. (1999a). Embedded software- an agendafor research. Memorandum No. UCB/ERL M99/63,
University of California, Berkeley, Department of EECS, University of California, Berkeley, CA,
94720.

Lee, E. (1999b). Modeling concurrent real -time processes using discrete events. Annals of Software
Engineering, 7, 2545.

Lee, E. and Messerschmitt, D. (1987). Synchronous data flow. Proceedings of the |EEE.

Lee, E. and Xiong, Y. (2000). System-level typesfor component-based design. Memorandum No.
UCB/ERL MO00/8, University of California, Berkeley, Department of EECS, University of Cali-
fornia, Berkeley, CA, 94720.

Lee E. A. (1997). A denotational semanticsfor dataflow with firing. Memorandum No. UCB/ERL
M97/3, University of California, Berkeley, Department of EECS, University of California, Berke-
ley, CA, 94720.

Lee, E. A. and Parks, T. M. (1995). Dataflow process networks. Proceedings of the |EEE, 83(5),
773-801.

Lee, E. A. and Sangiovanni-Vincentelli, A. (1997). A denotationa framework for comparing mod-
els of computation. Memorandum No. UCB/ERL M97/11, University of California, Berkeley,
Department of EECS, University of California, Berkeley, CA, 94720.

Luckham, D. C., Vera, J., and Meldal, S. (1995). Three concepts of system architecture. Technical
Report CSL-TR-95-674, Stanford Computer Science Lab.

Lynch, N. A. (1996). Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco.

Lynch, N. A. and Fischer, M. J. (1981). On describing the behavior and implementati on of distributed
systems. Theoretical Computer Science, 13(1), 17-43.

Magee, J. and Kramer, J. (1999). Concurrency: State Models& Java Programs. John Wiley & Sons.

99

Mattern, F. (1989). Virtua time and globa states of distributed systems. In Proceedings of the
International Workshop on Parallel and Distributed Algorithms, pages 215-226.

Matthews, S. G. (1993). Anextensiona treatment of lazy dataflow networks. Theoretical Computer
Science, 151(1), 195 — 205.

Meyer, B. (1999). Every little bit counts: Toward more reliable software. Computer, 32(11), 131—
133.

Milner, R. (1989). Communication and Concurrency. International Series in Computer Science.

Prentice Hall, London.

Milner, R. (1993). Elements of interaction: Turing award lecture. Communications of the ACM,

36(1), 78-89.

Milner, R. (1999). Computing and communication - what's the difference? In Symposiumin Cele-

bration of the Work of C.A.R. Hoare.

Minas, M. (1995). Detecting quantified global predicatesin parallel programs. In First Interna-
tional EURO-PAR Conference, volume 966 of Lecture Notes in Computer Science, pages 403—
414, Stockholm, Sweden. Springer-Verlag.

Morgan, C. (1985). Global and logical time in distributed algorithms. Information Processing Let-
ters, 20(4), 189-194.

Moschovakis, Y. N. (1994). Notes on Set Theory. Springer-Verlag.
Mowbray, T. J. and Malveau, R. C. (1997). CORBA: Design Patterns. Wiley Computer Publishing.
Murphy, D. (2000). Still flying high. San Francisco Examiner, page J1.

Murthy, P. K. (1996). Scheduling Techniques for Synchronous and Multidimensional Sychronous
Dataflow. Ph.D. thesis, University of California, Berkeley.

Neggers, J. and Kim, H. (1998). Basic Posets. World Scientific, Singapore.

Nicollin, X. and Sifakis, J. (1994). The algebra of timed process, ATP: Theory and application.
Information and Computation, 114, 131-178.

100

Nygaard, K. and Dahl, O. (1981). The Development of the S mula Languages. Academic Press, New
York, NY.

Passerone, R., Rowson, J., and Sangiovanni-Vincentelli, A. (1998). Automatic synthesis of inter-
faces between incompatibl e protocols. In Proceedings of the 35th Design Automation Conference.

The Association for Computing Machinery, Inc.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood Cliffs,
NJ.

Petri, C. (1962). Kommunikation mit Automaten. German language, University of Bonn, Bonn,

Germany.

Pino, J. L., Bhattacharyya, S. S., and Lee, E. A. (1995). A hierarchical multiprocessor scheduling
system for dsp applications. In Proceedings of the 29th Annual Asilomar Conference on Sgnals,
Systems, and Computers, Peacific Grove, CA.

Press, I. C. S, editor (1997). Proceedings of the Sxth IEEE Computer Society Workshop on Future
Trends of Distributed Computing Systems, Tunis, Tunisia.

Righter, R. and Walrand, J. (1989). Distributed simulation of discrete event systems. Proceedings
of the IEEE, 77(1), 99-113.

Rowson, J. A. and Sangiovanni-Vincentelli, A. (1997). Interf ace-based design. In Proceedingsof the
34th Design Automation Conference, pages 178-183. The Association for Computing Machinery,

Inc.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented Mod-
eling and Design. Prentice Hall, Englewood Cliffs, NJ.

Schmidt, D. A. (1986). Denotational Semantics: A Methodology for Language Development. Allyn

and Bacon, Newton, Massachusetts.

Schneider, F. (1997). On Concurrent Programming. Graduate Textsin Computer Science. Springer
Verlag, New York.

101

Sebesta, R. W. (1996). Concepts of Programming Languages. Addison-Wesley, 3rd edition edition.

Shiple, T. R. (1993). Survey of equivaences for transition systems. Unpublished, Department of
EECS, University of California, Berkeley.

Smyth, N. (1998). Communicating Sequential Processes Domain in Ptolemy |1. Memorandum No.
UCB/ERL M98/70, University of California, Berkeley, Department of EECS, University of Cal-
ifornia, Berkeley, CA, 94720.

Stoltenberg-Hansen, V., Lindstrom, I., and Griffor, E. R. (1994). Mathematical Theory of Domains.

Cambridge University Press.

Sztipanovits, J., Karsai, G., and Bapty, T. (1998). Self-adaptive softwarefor signa processing. Com-
muni cations of the ACM, 41(5), 66—73.

Tennent, R. D. (1991). Semantics of Programming Languages. Prentice Hall, London.

Tomlin, C., Pappas, G. J., and Sastry, S. (1998). Conflict resolution for air traffic management: A
study in multiagent hybrid systems. |EEE Transactions on Automatic Control, 43(4), 509-521.

van Glabbeek, R. J. and Weijland, W. P. (1996). Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3), 555-600.

Vuillemin, J. (1974). Correct and optimal implementations of recursion in a simple programming

language. Journal of Computer and System Sciences, 9(3), 332—354.

Wegner, P. (1997). Why interactionis more powerful than al gorithms. Communicationsof the ACM,
40(5).

West, D. (1996). Introduction to Graph Theory. Prentice Hall, Upper Saddle River, New Jersey.

Wexler, J. (1989). Concurrent Programming in Occam 2. Ellis Horwood Series in Computers and

Their Applications, England.

Wilson, L. B. and Clark, R. G. (1993). Comparative Programming Languages. Addison-Wesley,

second edition edition.

102

Winskel, G. (1994). The Formal Semantics of Programming Languages: An Introduction. Founda-
tions of Computing. MIT Press, Cambridge.

Yates, R. K. (1993). Networks of real-time processes. In International Conference on Concurrency

Theory, Lecture notesin computer science, pages 384—397.

Young, J. S., MacDonald, J., Shilman, M., Tabbara, A., Hilfinger, P, and Newton, A. R. (1998). De-
sign and specification of embedded systemsin java using successive, formal refinement. In Pro-
ceedings of the 35th Design Automation Conference. The Association for Computing Machinery,

Inc.
Yourdon, E., editor (1979). Classicsin Software Engineering. Yourdon Press, New York, NY.

Yourdon, E. (1993). Decline& Fall of the American Programmer . Yourdon Press, Englewood Cliffs,

New Jersey.

103

Appendix A

The Semantics of Programming

L anguages

Effective communication requires awell defined vocabulary as well as clear rulesfor how
to use the words contained within the vocabulary. To precisely convey ideas and avoid misunder-
standing, a vocabulary must clearly associate meaning to the words the speaker uses. The notion of
associating meaning to words is embodied in the word semantics. When Michel Bréa introduced
thisword in 1900, it referred to the study of how words change their meanings. Since 1900, the
meaning of semantics hasitself changed and today semanticsis generally understood as the study of
the attachment of meaning to words or sentences.

There are three mgjor branches in the discipline of semantics: natural language, mathe-
matical logic and programming languages. In the case of natural languages, meaning is associated
with words and phrases as spoken and written by human beings. With mathematical |ogicthe words
and phrases are expressions of logic . With programming languages the words and phrases are key-
words and variables. Mathematical logic and programming languages share thetrait of dealing with
artificial languages, in that the languages of mathematics and programming are designed. Thisisin
sharp contrast to natural languageswhich are not designed and exist prior to their study in asemantic
framework.

A commonality between languages of all typesisthe requirement of an aphabet. An al-

phabet is a set of symbolsor characters such as a, b, 7 and 5. Combinations of these characters|ead

104

to strings of words and sentences. A languageis simply a set of stringsformed from a given alpha-
bet. Language semantics assign meaning to the strings. The bedfellow of semanticsis syntax. The
syntax of alanguage providesrulesfor how characters can be correctly combined. A programming
languagerequiresasyntax and semanticswhich givemeaning aswell asrulesfor combiningthe key-
words of alanguage. Closely related to a programming language is amodel of computation (MoC).
Informally an MoC is a programming language without an explicit syntax. There are three major

approaches to the semantics of programming languages. axiomatic, operational and denotational .

A.1 Axiomatic Semantics & Predicates

In axiomatic semantics, the meaning of astring .5 is described in terms of a pre-condition
and post-condition. A pre-condition of 5 is a predicate that holds true prior to the execution of 5.
Similarily a post-condition of 5" is a predicate that holds true after the execution of 5. The goal of
axiomatic semanticsisto userulesof inferenceto deducetheeffect of executing aprogram consisting
of aset of statements. For this reason, axiomatic semantics are particularly amenable to proving

properties about a given program.

A.2 Operational Semantics& Automata

Operational semantics defines an abstract machine with aset of data structures and opera-
tions. The semantics of the abstract machine are assumed to be known. The semanticsof aparticular
programming language can then be described in terms of thisabstract machine. Theresultisthat op-
erational semantics specify how the state of the abstract machine changes as a program is executed,
or how acomputationiscarried out. Thisissimilar in spirit to the notion of a Turing machine, which
is effectively the canonical abstract machine. Operational semantics are particularly useful to com-
piler writers but often involvetoo much implementation detail to be of use by otherssuch aslanguage

users.

105

Inorder tofully specify operational semantics, atechniquemust be availablefor describing
theabstract machine. Most often, the abstract machineisrepresented by atransition system[Hopcroft
and Ullman, 1979; Winskel, 1994; de Bakker and de Vink, 1996; Lynch, 1996]. de Bakker and de

Vink provide avery general definition of atransition system as follows.

Definition A.1. TRANSITION SYSTEM

A transition system, 7, isatriple (Con f,Obs, —) in which
o Confisaset of configurations.
e Obsisaset of observations.
o —C Conf x Obsx Conf.
0

Typicaly, the configuration of atransition systemis based on anotion of state, an input symbol from
an input a phabet and in some cases a notion of memory (representing past configurations). The set
of possibleconfigurations of atransition system consist of both initial and final configurations. The
observations of atransition system are based upon actionsthat correspond to charactersin an output
alphabet. In some cases the set of observation actions can be empty, meaning that for each transition
the null observation occurs. The transition relation — indicates how transitions can occur from one
configuration to another and the observation that results.

There are several concrete examples of transition systems that may be familiar to many
readers. A finite automaton is a transition system in which the configuration is based on a finite
set of states, ¢, and afinite set of input symboals, .. In the case of afinite automaton, the transition
relation becomes atransitionfunctionin whichthedomainis() x X and therangeis¢). A pushdown
automaton augments a finite automaton with an infinite stack. A Turing machine augments a finite
automaton with an infinite capacity memory. As can be guessed based on the memory augmentation,
a Turing machine is more complex than a pushdown automaton which is more complex than afinite

automaton.

106

A.3 Denotational Semantics & Recursion

While operational semantics focuses on the “how” of execution, denotational semantics
focuses on the “what.” Denotational semantics givesinformation on what mathematical functionis
being computed by a program. Operational semantics describes a program in terms of the under-
stood meaning of an abstract machine. Denotationa semantics describes a program in terms of the
understood meaning of mathematical objects. For each entity (string) contained within a program-
ming language, amathematical object and function which mapsthe entity to the mathematical object
isdefined. The mathematical objects can then be rigorously manipulated, unliketheir corresponding
programming language entities. The name denotational semanticsindicates the fact that mathemat-
ical objects denote the meaning of their corresponding entities.

Denotational semantics observes two principles, the first being that a program computes
(or denotes) a particular mathematical function. The second (often called the compositionality prin-
ciple) being that the meaning of a program is composed of the meanings of its syntactic parts.

Semantic denotationof amathematical functionisrelatively straightforwardif thefunction
happensto befinite (i.e., the domain isfinite). In such cases, the function of the program is simply
the composition of the constituent functions at each step of the algorithm. Unfortunately, many in-
teresting programs can only be represented by infinite functions. How do we describe the behavior
of these infinite objects?

Clearly there are some infinite functions which are easy to describe. One exampleisthe
identity function, /(n) = n. Nevertheless, there are many more infinite functions that can not be
easily described. A very important class of infinite functions include recursive and/or indefinitely
iterative functions. A recursive definition of a given entity is one in which the name of the entity
“recurs’ in its own definition. A real world example of recursion can be found in two facing mir-
rors. If one attempts to describe the image in one of the mirrors, the description will contain itself.
Engineering and mathematical examples of recursive functions include the factoria function and
feedback systems. In indefinite iteration the number of repetitions of a repetitive operation are not
known a priori, leaving open the possibility of an arbitrarily large number of repetitions. A while
loop is an example of indefinite interation.

Recursion and indefinite iteration are interchangeable. Any function involving a while

107

loop can be rewritten using a recursive function and visa versa. Examples of recursion and itera-

tion are pervasivein programming languages. * The popularity of these kinds of functionsisduein

part to the fact that although they are infinite, they can be easily specified using finite descriptions.
Thekey problemwitharecursivedefinitionisthat it may not uniquely represent afunction.

Consider for example the following recursive definition operating on the integers:

1 ifn=20
f(n) = { _ (A.1)
f(n+1) otherwise

Itisclear that f(0) = 1 and hencethat f applied to any negativeinteger isaso 1. Things become
less clear if we apply f to positive integers. To make this plain, note that the following functions

both satisfy Equation A.1:

1 ifn <0
fl(n){

undefined otherwise

2 otherwise

1 ifn<0
fz(n){

Thereisnoway to determinewhether f equals f; or f; or for that matter any one of theinfinite other
possibilities. Part of the uncertainty relates to the fact that our definition of f itself depends on the

definition of f. We can eliminate confusion by re-writing f as an argument of a function.

1 ifn=20
F(fin) = { _ (A.2)
f(n+1) otherwise

F, which is sometimes called a functional, operates on a function and is completely defined. By
substition we have that Vrn € domain(f), F'(f;n) = f(n) or more succinctly F(f) = f. An
equation of thislatter form saysthat f isafixpoint of F and hence the program computes a function
whichisafixpoint of F.

There are many fixpoints of ¥ including f; and f;. Notethat f is a function mapping
integersto integers and, as with all functions, we can think of f as aset of ordered pairs. This begs

the question, which set of ordered pairs(e.g., f = f1 or f = f5) isthe best fixpoint solutionfor F'.

L. Peter Deutsch stated that to iterate is human but to recurse divine. Perhaps the problem is our desire to meddlein
the affairs of God.

108

The standard approach for sel ecting the best fixpoint isto define apartia order on the setsof possible
choicesfor f. Inthiscase, set inclusionisused to order the sets. Thus, the fact that f; isa subset of
f2 meansthat f; isconsidered lessthan f>. Indeed, based on set inclusion f; islessthan every other
possiblefixpoint for F'. We call this smallest fixpoint function the least fixpoint, and this reasoning
leads usto interpret f asbeing equivalentto f;.?

Dana Scott and Christopher Strachey developed denotational semantics in part to apply
the above reasoning to recursive functionsin programming languages. At the core of Scott and Stra-
chey’s denotational semanticsisatheory of computation developed by Scott known as domain the-
ory. Interested readers can find detail ed expositionsof domaintheory in Davey and Priestley [1990];
Gordon [1979]; Stoltenberg-Hansen et al. [1994]; Tennent [1991]; Winskel [1994]. Additional dis-

cussion on partially ordered sets can be found in Section 2.1.1 of this dissertation.

2The intuition behind choosing the smallest function (or set of ordered pairs) for f is as follows. Smaller sets gener-
ally provide more information about their contents than larger sets. Certainly, the set of human beings (a very large set)
implies less information than the set of 55 year old Nigerian malesliving in Alaska (a relatively small set). An emphasis
on maximal information is common within the field of computer science.

| ndex

Acyclic Diposet Theorem, 32
adapter, 52

amorphous, 52

anti-chain, 21

Asynchronous message passing, 44

atomic components, 53
bipartite graph, 25

chain, 21

communication interface, 50
communication order relations, 33
comparable, 21

compiletime, 41

composite components, 53
Connected Thread Theorem, 31
conservative, 42

consumption, 59

containment, 20, 28

Contention, 38

cover container, 28

covers, 21

cycle, 24

Datadriven, 59
Deadlock, 39

Deadlock, 39

depth, 31

Diposet, 27

diposet, 20, 26
Directed Graph, 24
directed graph, 24
Dormancy, 38
down-set, 21

enabled, 25

enabling tokens, 25
event dispatch thread, 45
Event driven, 59

events, 27
fires, 25

Graph, 23
ground set, 21

Hasse diagram, 21
hierarchica heterogeneity, 52

Homosemantic abstraction, 56

incomparable, 21, 27
interface, 50

interference, 17

109

interleaving, 19
Interval Order, 23
IR 53

L abelled Diposets, 33
length, 24

Liveness, 17

marking, 25
model of computation, 49
multigraph, 26

mutually non-inclusive, 27
order, 20, 21, 28

paired directed graph, 27
partia order, 21

Partially Ordered Set, 20
path, 24, 28

Petri Nets, 25

Premature Termination, 39
Process-based, 50
processes, 50

production, 59

PtPlot thread, 46

reorder invariant, 61
reorder variant, 61
Reordering, 61
Run-time, 41

Safety, 17
schedul e-based, 50

Sequential Nested Diposet (Thread), 30

strong inclusion, 21

structured, 52

Synchronous message passing, 44

The Nested Containment Rule, 28

thread, 17

thread of control, 17
threaded order relations, 33
Tokens, 25

totally-ordered set, 21
Transition System, 104

Undecidability, 42
up-set, 21

weak inclusion, 21

Weighted Chain Theorem, 29

wrappers, 52

110

